ESDITRTS119
1

i
Lok

At
.

Pa

saroh
L---C P ’&_‘cy 5w

L I CLR R pre

Technical Note

1975-13

LO - A Text Formatting. Program

!

A. Evans, Jr.

21 February 1975

Prepared for the Advanced Research Projects Agency
under Electronic Svstems Division Contract F19628-73-€-0002 by.

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEANGTON, MASSACHI SETTS

&

Approved fot public release; distribution unlimited.

Apaoo T3

The work reported in this document was performed at Lincoln Laboratory,
a center for research. operated ‘by Massachusetts lastitute of Technology.
This work was sponsored by the Advanced Research Projects Agency of the
Department of Defense under'Air Force Contract F19628-73-C-0002 (ARPA

This report may be; teproducod to sahsf'y need: of U.S. Government agencies.

o F—"'L.—

0 st B Ity
Sk _w'—_' = g 'I|“ ‘D o L 1
LN S
- A .
I,n,r--.",-. b .'II' IR | o 0
" 1 31 tw '
b e T ey A
! ;r'. d‘ lll' 2 ,I,J" 0 1Y '.‘! 1
Y - T .
1 VTR " 5.*"’9-';"' -1
I = s ‘. - .lf':. rl G !
4 -) 0 .= P] t_ o =
att L 1 (‘.‘.:_ —I".Z*,h ¥
; B 4
Sl = ’
‘—-L-

s, ronmeat are those of the
4 ﬂwuecesurily representing the

Genmml

1 l"',;
vas. be wed }‘gapwnved for publication.
FOR ma'coumlﬁa@ﬁ"f*&’»f[-c :
s e 'ﬁ :T-—I. : -”

Fuioe C. Rasbe, m mt JSaF~ -
Chief, ESD meotn‘l-a!:"mth Prgecf Office

’
i

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

LO — A TEXT FORMATTING PROGRAM

A. EVANS, JR.
Group 44

TECHNICAL NOTE 1975-13

21 FEBRUARY 1975

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

Abstract

LO is a text formatting program used to prepare
documents such as this report. It reads an input text
file and creates an output file. The 1input file
contains text to be printed, interspersed with commands
to LO that direct its operation. Commands are expressed
in a language of considerable sophistication. The
command language is described, the presentation being
designed to be suitable both as a primer to the learner
as well as a reference manual for the expert.

LO currently runs on the TX-2 Computer at Lincoln
Laboratory, and details are provided on its use in that
environment. There is a brief discussion of the steps
involved in implementing it on a different computer
system.

- iii -

e -

Table of Contents

Abstract

Ch 1: Introduction
1,1: Text Processing . .
123 Variables and Data Types
1.3 Expressions .
1.4: Commands .
1.5: Errors and Warnings . .
1.6 Output Devices « B E

Ch 2: Basic LO Caspabilities

Ch 3:

2.1
2.2
2(3181
2.4
2.5:
2.6:
2.7:
2.8:
2.9:

Page Layout o e
Text Control
Substitution

Text Output

Headers and Footers .
Page Numbering

Buffers . . . 5 !
User-Defined Variables .
Conditionals

Advanced LO Topics

Tabs . 1
Sentence Ending
Hyphenat ion
Footnotes .
Flags

Macros

Traps
Input/0Output

The Command “.overstrike” .

iii

= = 0 NS W

- e

13
16
i8
20
22
23
24
25
27

29

29
30
31
32
34
35
38
40
41

Ch 4:

Ch s

Ch 6:

Ch 7:

Ch 8:

Index

3.10: The Command ~.set”
3.11: The Command ~.expand”
3.12: Variable Width Fonts

Built-In Variables

Command Descriptions .

Examples .

6.1: Date and Time .

6.2 Miscellaneous Examples .
6.3: Chapter and Section .
6.4: Recursive Macros .

LO on TX-2

7.1 How to Use LO .

7.2 On-Line Documentation

7.3: LO on Another Computer .

Summary Tables .

B8.1: Table of Variables .
8.2: Table of Commands .
8.3: Options for ".set”

Sy =

42
45
46

a?

53

63

63
65
68
70

73

73
74
7’5

27

7?
78
80

83

LO — A TEXT FORMATTING PROGRAM

Chapter 1: Introduction

L0 1is a text formatting program used to prepare documents such as
this report. The user 1is provided with a command language of
considerable sophistication in which to express his wants. The design
philosophy in specifying the command language has been to favor
generality - problems have been solved by inventing deneral tools
rather than specific solutions. The result has immense flexibility,
but is perhaps not as easy for the beginner to learn as it might be.
LO’s command language has much the flavor of a computer programming
language, and I think it safe to predict that programmers will find it
easier to learn than will non-programmers. LO would have turned out
much differently had I considered a different audience, but I wanted a
tool that my colleagues and I would find pleasant to use, and we are
all programmers.

In writing LO, I took ideas from wherever I found them. LO owes a
great deal to the RUNOFF programs on TENEX and MULTICS, although much
of it is new. The current LO on TX-2 is descended f{from an earlier
TX-2 version written by D. Austin Henderson, Jr. I have assumed
responsibility for LD and have performed a complete rewrite of both
the program and this description. Many useful suggestions for
improving L0 were made by Louis N. Gross, Harry C. Forsdick and Alan
G. Nemeth; these are gratefully acknowledged.

LO reads from an input text file and creates an output file.
Lines are read from the input file one at a time and processed. Each
line must be less than 300 characters long. If the line starts with
any character other than ~.” it is treated as a string of words of
text to be added to the output, with line breaks and pagination as
described hereafter. If the line starts with ~.” it is treated as a
command; following the ~.” is the command name, followed by space,

Introduction 1.0

follouved by zero or more parameters.

This report is organized so as to be useful both as a primer and
as a reference manual. The rest of Chapter 1 provides introductory
information about various aspects of L0O's processing. Chapter 2
presents LO's basic capabilities, each section addressing some aspect
of LO, describing how it works and the commands associated with Iit.
Chapter 3 is organized similarly but addresses topics of less interest
to the beginner. The next two chapters contain all the details, in
reference manual form. In Chapter 4, each of LO's predefined
variables is described, and Chapter 5 contains descriptions of all the
commands. Next, Chapter 6 contains some examples of the use of LO's
abilities. In Chapter 7, the implementation of LO under the APEX Time
Sharing system on the TX-2 computer at Lincoln Laboratory is
discussed. Included 1is a brief discussion of some of the lssues
involved in implementing LO on another computer. Finally, Chapter 8
contains tabular listings of all the predefined variables and all the
commands. The beginner 1s advised to read carefully this chapter and
the next, and then scan the remainder of the document so he will knou
vhere to look for help as he becomes interested in LO's more advanced
features.

This document has been designed to make it as easy as possible to
find things in it. An index of terms appears at the end, with
references to the page and line number where each term 1s discussed.
Internal references in this document are wusually by section number,
and the lower outside corner of each page contains the inclusive
section numbers that appear on that page. Further, the lower inside
corner shows the title of the current chapter, and the lower center
contains the title of the current section. All these things are done,
not surprisingly, using LO features. In fact, this document pushes
fairly hard in most (although not all) of the directions that LO lets
one go.

In writing this document, it has proved convenient to assume that
LO’s output is a printed document, while in fact it is a text file¢1>,

1 This is not unreasonable, since the user will probably print the
i

1)
file as soon as LO has created it for him.

1.0 Introduction

3

Thus there are references such as “upspacing the paper,” “page eject,”
“output page,” etc. This metaphor simplifies the wuriting.

This document has been prepared on TX-2 and describes the TX-2
implementation of LO; it therefore uses the TX-2 character set. A feuw
facts about this set may help the reader. The set 1includes the
following characters:

« B & A Greek letters

| vertical bar

I double bar

x multiplication cross

Note the difference between vertical bar ~|~, letter “I” and number
"1”. Note also that “"x~ is wused for multiplication, "%~ serving a
different purpose. The underscore character ~_~ is nonspacing, so
that it appears in the same print position as the character that
immediately follows it. Also, the set includes backspace, as well as
superscript, subscript and normal.

LO is written entirely in BCPL, and the source code is readily
available and well commented. Section 7.3 discusses briefly the
issues involved in implementing L0 on another computer; please see me
for further information. I will also be glad to help users to make
the best use of this tool. I will listen receptively to suggestions
for changes and improvements to LO, but I do not promise to act on
them. Of course, I will be responsive to any reports of bugs - either
in the LO program or in this document.

1.1 — Text Processing: In processing text, any combination of spaces,
tabs and carriage returns is treated as a single space and regarded as
a word separator. This “word” is thus a concatenation of consecutive
printing characters.

In LO's usual mode of operation, words are added to the output
line separated by a single space until one is found which goes beyond
the right margin. The line is then added to the output, and the next
line is started with the word which overflowed the previous line<e?>,
If the user so requests (see Section 3.3), LO will attempt to hyphe-

<2> There is no check of overflow on this first word in the line.
Iﬂis prigents endless looping trying to output a word which 1is longer
an a ne.

Introduction Text Processing 1.0 - 1.1

nate this word.

There are two concepts relevant to storing text: adjust mode and
fill mode. The description just given was of fill mode, in which LO
puts as many words as there are room for on each line, starting a new
line only when necessary (or when directed to do so by a command).
The transition in the input from one line to the next is irrelevant.
Independent of fill mode is adjust mode, which concerns alignment of
the right margin (as in this document). When fill mode is on and a
line has been completed and adjust mode is on, LO then inserts spaces
as needed between words so that the line ends exactly on the right
margin¢3>, When fill mode is off, each non-command line (including
blank lines) is copied into the output exactly as it appears 1in the
input. The setting of the adjust switch is irrelevant if fill is off.
The adjust switch and the fill switch each may be set independently
using the “.set” command, which is described in Section 3.10.

The character “A” is translated as a non-separating space¢4’>. The
“A” is treated as a non-space in deciding where to end a line (in fill
mode) and in adding spaces in right-margin adjustment; it is replaced
by a space at the very last moment of LO's processing. “A” is also
diven special treatment in the insertion of hyphens.

Tabs in “.plain” lines and in lines printed while fill mode is off
and under control of “.unproc~ are processed specially. GSee Section
S el LS

LO inserts an extra space between sentences. Briefly, LO assumes
a sentence break when one word ends with ~.” and the next word starts
with an upper-case letter. The actual algorithm is more complex, and
the user is provided control over its action. Detalls are provided in
Section 3.2.

1.2 - Variables and Data Tvpes: LO maintains a table of variables for
the benefit of the user. Some variables are built in with predefined
meanings and values, and the user 1is free to define others of his

(3> The spaces are inserted randomly into the gaps between words.

¢4> A different character may be selected using the command ~.set
spacer”, as described in Section 3.10.

1.1 - 1.2 Variables and Data Types Introduction

5

choosing. Syntactically, a variable name s made up of upper- and
lover-case letters, digits, and the period. The first character must
be a letter, either upper- or lower-case. Variable names used in this
document are enclosed in “#°s. Thus #lspacing# is used to refer to
the variable named “lspacing”.

Each variable has a data type, which is one of INT (integer), LIN
(line spacing), STR (string) or BUF (buffer). An INT is an integer,
positive or negative, whose magnitude is less than 234, A STR 1is a
character string of (essentially) unlimited length made up of any
characters except carriage return. A BUF 1is a buffer used to hold
lines of text either for later 1insertion into LO's output or for
rescanning as input to LO. Buffers are discussed further in Sections
2.7 and 3.6.

A LIN denotes an amount of vertical spacing on the output page.
In general, a LIN is an integer which represents a whole number of
lines of vertical spacing. However, Lincoln HWriters as well as
certain LDX character sets permit half-line spacing as a
possibility<5>, If the user is not using such a character set, he may
ignore the next paragraph and assume that all references to LIN
quantities are to 1integers. The default conversions have been
arranged so that everything works correctly.

Each full line of vertical spacing is divided into a flxed number
of part lines. In the present implementation of LO thls number 1is
fixed at two, and the (read-only) variable #partsperline# has this
value to reflect that fact<¢6>, A vertical spacing is written as tuo
inteders separated by the character "x~, wWhere the first integer
specifies the number of whole lines and the second the number of part
lines¢(7>, Thus, given that #partsperline# is two, a spacing of “1=x1”
represents one-and-a-half spacing; "0%x3° would work as well. All

<5> None of the APEX LDX sets — 1 to ? - has this property. This
document uas printed with a set which does have it.

6> Someday it may be possible for the user to vary this quantity,
but I am unlikely to work on this until there is harduware to support
the added flexibility.

(?> A parenthesized expression may be used instead of either of these
integers. The parentheses are required by the precedence rules of the
expression scanner.

Introduction Variables and Data Types 102

6

quantities involving vertical spacing are expressed this way, and
certain commands (including mostly those that set these variables)
expect a parameter oi type LIN.

Certain wvariables are 1initially declared with default values.
Many of these values, such as the current page number in #pageno#, are
updated automatically by LO as processing proceeds. Special commands
are provided for convenience to change many of these variables (for
example, the command ~.lspacing” to set the variable #lspacing#), but
most of them may also be changed by “.store”¢(8>, Setting a variable
has the obvious effect on the future operation of LO. For example,
setting #rmarg# using either “.store” or “.rmarg” changes the right
margin for all successive output.

There are over 50 variables initially defined in LO, many of them
of quite specialized use. All are described completely in Chapter 5
and summarized in tabular form in Chapter B; a few of interest to the
beginner are now listed. The value shoun is the default value. In
this table and throughout this document, "N” stands for an INTeger
value and "L” for a LINe value.

bline 66x0 L Number of lines on the pagde.

lmarg 0 N Current left margin.

lspacing 2x0 L Vertical spacing betueen lines.

nextpage 2 N Page number to be assigned to the next page.
pageno 1 N Page number of the current page.

rmarg 71 N Number of characters per output line.

year N The current year - 1974, 1975, etc.

month N The current month -1, ..., 12.

day N The day of the month - 1, ..., 31

ieekday N Day of the week - 0 = Sunday, "6 = Saturday
hour N Hour of the day - 0, ..., 23.

minute N Minute of the hour - 0, ..., 59.

second N Second of the minute - o0, ..., 5%9.

The last seven variables listed are set by LO to the date and time
when it begins its work; they are not updated during LO's operation.

A variable may be used in elther of two kinds of context: In an
expression it is treated as an integer or as a LIN; if it is a string

(8> Some variables are read only and cannot be changed by the
“.store”™ command. This permits LO to check that their value is
reasonable, for otherwise much confusion might follow. For example,
it would be disastrous were #lspacing# to become zero or negative.

- Variables and Data Types Introduction

4

it is scanned and converted to either an INTeger or a LINe, depending
on its syntax, with an error message if its syntax 1s not that of
either. It is a detected error if the value is a buffer or is
undefined. The variable is NOT to be enclosed in “#"s in an
expression. Expressions are described in Section 1.3.

The other type of context requires that the variable be substi-

tuted for, as a string. This occurs in “.subst”™ and ~.triple”
commands and in headers and footers. Here the wvariable must be
enclosed in “#7s. If the variable is an integer or a LIN it is

converted to a string (with a "%~ for LINs), and if it is a buffer the
value is the widest line in the buffer<?>. If there is more than one
line of that width, the first such is given. Here “width” refers to
print positions on the page. Substitution is discussed in Section
Zae G

1.3 - Expressions: Many of the command lines require parameters of
type INT or LIN. These may be either absolute (like "2~ or “ix17), or
they may be expressions. These expressions are evaluated when the

command line is encountered. The LIN operator *x~ takes precedence
over “x” and ~/°, wuwhich in turn take precedence over “+~ and "-";
otherwise evaluation is from left to right. Parentheses may be used

to change the order of evaluation as usual.

An INTeder 1is represented internally in LO as a signed quantity
vihose magnitude is less than 234. A LINe is represented as a twhole
number of part-lines whose magnitude is less than 234. Built-in
LINe-valued variables are not permitted to have negative values,
although user-defined variables are not so restricted. The table
below shows the result of various operations on INTs and LINs. The
arithmetic 1is done using TX-2 hardware instructions, which perform,

for the most part, in the expected manner. If both p and g are
positive INTegers, then the value of the expression
P - qx (p/g)

is the remainder on dividing p by q. It is harder to predict the
effect if p or q is negative.

(9> This 1s seldom useful, but results from the processing of “A~ for
a buffer. This latter IS useful.

Introduction Expressions 1.2 = 1,3

| + - x / I %
N op N N N N +2 L
NoplL L -1 L »3 err err
L op N L -1 L -3 L -3 err
LoplL k err err err
Notes:
+1 N is converted to L by assuming it to be a number of
full lines. That 1is, "3 in LINe context is

interpreted as “3x0~.

-2 Division aluays truncates its result towards zero. It
is a detected error to attempt to divide by zero.

-3 Take L as a whole number of part lines, perform the
operation (with truncation for ~/7), and interpret the
result as a whole number of part lines. It is a
detected error to attempt to divide by zero.

err These situations are detected errors.

Operators in LO Expressions

Some examples now follow, in which it is assumed that there are

tiio part lines in each full line. (That is, 1x0 denotes the same
spacing as does ox2.)

1%l + 2%1 -+ 4x0

1%l + 2 = 3x1

1ol x 3 -+ 4x1

B8 / 3 - 2

Bx0 / 3 » 2x1

An easy way to see this last result is to think of it as
Oox16 / 3 -+ Ox5
which is, in fact, how it is done in LO.

LO converts from INT to LIN when needed. If an INT is used in a
LIN context, it is interpreted as a whole number of lines. Thus,
.leave 1
has precisely the same effect as does
.leave 1x%0
It is a detected error to use a LIN value in an INT context. « may be
used for this conversion if it 1is needed. « preceding a LINe-valued
expression evaluates to that INTeger representing the number of part
lines. Thus, the value of "« 2x1~ is the INTeger “5~.

g3 Expressions Introduction

2

B preceding a buffer name evaluates to that INTeger which is the

number of lines in the named buffer. The count is made of lines
stored and does not include space after each line (as derived from
#lspacing# when the buffer was created). s preceding a buffer name

evaluates to that LINe which is the amount of vertical spacing in the
buffer (including the space lines). It is just the amount of vertical
spacing that would be used were the buffer “.insert“ed. See Section
2.7.

A preceding a variable name in an expression evaluates to that
INTeder which is the width of the string that would be substituted for
that variable, were it to appear in a context subject to substitution.
A preceding a buffer name evaluates to an INTeger which is the width
of the widest 1line in the buffer. Note that this is the width (in
print positions) and not necessarily the number of characters in the
line.

Variables are understood by the expression evaluator. If a
variable has an INT or LIN wvalue, then that is used. If it has s
string value then that value 1is scanned and interpreted as either an
INTeger or a LINe, depending on its syntax. A variable appearing in
an expression is not to be enclosed in “#°s - these are to be used
only 1in “.subst” or “.triple” command lines, and in headers or
footers.

The character “|~ (vertical bar) terminates an expression and it
and all remaining characters on the line are ignored, so arbitrary
comments may be inserted to its right.

1.4 — Commands: LO has a repertoire of over 65 commands, some of
vthich are rather specialized and of 1little interest to the beginner.
A complete description of all the commands in alphabetic order appears
in Chapter 5, and a tabular summary appears in Chapter 8. This
section defines the notation that is used in the command descriptions,
and many of the commands of interest to the beginner are described in
Chapter 2.

A command line starts with a ~.”, f{followed immediately by the
command name, followed either by the end of line (if the command takes
no parameters) or by space. Optional parameters follow, usually each

Introduction Commands 1.3 - 1.4

10

followed by a comma.

Multiple commands may appear on a line, separated by the character
; all spaces after the “ll” are ignored. Comments may appear after
the character "I~ on most lines uwhich are interpreted as a command.
Note that the command syntax requires a space after the command name,
so that there must be a space before “I” or ~|~ 1if there are no

arguments. The last “I~” may be followed by text. If one or more
commands on a8 line are followed by text, the text may not begin with
1" or "W or “.". 0f course, text appearing on a8 line without

commands may start with “|~ or “II", or with space followed by ~.~.

As discussed in Section 1.1, LO's usual mode of operation 1is to
store words one after another into the output, putting as many as
there 1s room for on each line. The phrase “causes a break”™ is used
in the command descriptions to indicate terminating the present output
line so that the next word of input text goes on the next output line.
A command does not cause a break unless 1its description states
explicitly that it does. Some commands are not meaningful when LO's
output is to a buffer.

Some commands (such as “.subst” or ~.if") take as final argument
“the rest of the line”. This “rest” is operated on by the command,
and the result is processed in all ways as though that line had
appeared in the input text in place of the command line. The “rest”
may be either a command line or text.

The following abbreviations are used in the command descriptions:

Any expression whose value is an INTeger.
Any expression whose value 1s a LINe spacing.
A buffer-valued variable.

Y Any variable.

<V-1list> A list of variables, separated by commas.

<triple> A three-part string, as described in Section 2.5. The
first non-blank character is taken as the break character.

<text> Any text at all. The text extends to the end of the line
and is not scanned for ~|~ or “l~,

ar =2

Other conventions used only once are defined as needed.

1.4 Commands Introduction

11

1.5 — Errors_and Warnings: If LO detects an error while processing a
command line, a suitable message and the line at fault are typed to
the user, and HELP is called¢10>, If the user resumes from this HELP
call, the line in error is either ignored totally or a default value
is used, and processing continues. An obvious mark in the error
message shows how far the scan has gotten when the error was detected.

Only one error 1is reported (usually) on a8 line. If an error lis
detected in a line in uhich substitution has already been performed
(by ~“.subst”), the line printed will be the result of the substitu-
tion. If LO 1is processing a trap or a header or footer line when the
error is detected, that fact is mentioned in the error message.

If LO detects more than 25 errors, it assumes that the problem is
serious enough that continuing is not worth while. It comments to
this effect on the console (even if error output is to a file) and
then terminates the run.

If the user has requested that his output be LDXed (l.e., be
printed by TX-2's on-line LDX printer), this LDXing is suppressed if
any erraors are detected, and LO comments on the console about this
suppression. Further, in this case LO peels to BT with negative
epsilon (i.e., returns to the operating system reporting that the run
was unsuccessful).

LO issues certain warning messages that are not fatal and do not,
for example, 1inhibit LDXing the output file or cause peeling to BT
with negative epsilon. Further, certain situstions produce optional
warnings, in that LO does not usually comment on them but will do so
if the user so requests. Details are provided in the description of
“warn” option of the command "“.set”, in Section 3.10.

1.6 — Output Devices: The following data may be of use in preparing
output to be printed on the LDX printer at TX-2. There are 67 lines
on each page. MWide character sets, such as that used in printing this
document, permit 81 characters on a line. (This leaves about a half

10> This HELP call may be suppressed by the optional argument “n” in
invoking LO from APEX. If argument “e” is used the error output is to
g f%}e rather than to the console and there is no HELP call. See
ection 7.1.

Introduction Output Devices 1.5 - 1.6

12

inch of left margin and no right margin at all.) Narrow characters
, (such as sets 6 and 7) permit 109 characters per line, again with no
right margin. This document is printed with #rmarg# set to 70, with
#bline# at 62x0, and with #lspacing# at 1x1. The windows are 1 on the
even-numbered pages and 5 on the odd pages. The value of #topwindow#
is 2x0.

There 1is a typeout program TO available which can be used to type
LO's output on the console 6 typeuriter with any printing element
(i.e., ~golf ball”) of the user’'s choice. TO permits multiple balls
to realize a larger character set than 1is available on a single ball.
Documentation for TO may be found in the Semi-Public Program notebook
in the TX-2 room.

1.6 Output Devices Introduction

13

Chapter 2: Basic LO Capabilities

This chapter provides a somevhat tutorial introduction to some of
LO's basic capablilities. Each section addresses some aspect of the
processing that LO does, describing the facility and discussing the
commands that relate to it. The abbreviations that are used in the
command descriptions are described in Section 1.4.

For most commands, & tuwo- or three-letter abbreviation is also
available with equivalent meaning. These abbreviations are not given
here but are presented in the complete description of all the commands
which appears in Chapter 5, as well as in the table in Section B.2.

As previously mentioned, any line starting with *.” is interpreted
as a command. There are three characters treated specially if they
appear immediately after this ~.~: Any line starting with ~.%x" is
treated as a comment, the remaining part of the linme being ignored by
LO. Any line starting with ~..” has the first dot stripped off, and
the rest of the 1line is copied verbatim into the output. (This is
useful for inserting commands into a buffer intended as a macro, as
discussed in Section 3.6.) Flinally, a line starting with ~.+" 1is
interpreted as a bullt-in LO command, even though there might be a
buffer with the same name. This also is discussed in Section 3.6.

2.1 — Page Layout: LO assumes a page whose top line is numbered one
and whose bottom line is numbered #bline#, so there may be #bline#
lines per page. A page consists of #topspace# blank lines, followed
by as many header lines as specified (from zero to 10, inclusive) each
followed by #hspacing# vertical space, followed by #headspace# blanks,
followed by lines of text each followed by #lspacing# space, followed
by #footspace# blanks, followed by (from zero to 10) footer lines each
followed by #fspacing# vertical space. The total vertical spacing
used by the above 1is #bline#. In addition, #topwindow# blank lines
are left at the top of each page, but this amount is not taken from
#bline#. Thus, using a nonzero value of #topuindow# moves the uhole
display down on the page, while using a nonzero value of #topspace#

Basic LO Capabilities Page Layout 2.0 - 2.1

14

leaves blank space at the top of the page but does not move the last
footer. All this is best shown in the figure below. The [] brackets
enclose vertical spacings. Note the ~1* in the left margin to

[#topuindou#]

1 (#topspace#]
HEADER 1
[(#hspacing#]
[(#headspace#]

TEXT
[(#lspacing#]

LAST TEXT LINE
[#lspacing#]

[(#footspace#]

FOOTER 1

(#fspacing#])
LAST FOOTER
bline

Vertical Layout on the Page

indicate 1line number 1, and “bline” to mark the bottom line on the
pade.

The left margin is just after column #lmarg#, so with #lmarg# at
zero (the usual case) the first column stored into is column one. The
right margin is just past column #rmarg#, so there are

rmarg - lmarg
character positions per line. With the default values of 0 for

2.1 Page Layout Basic LO Capabilities

15

#lmarg# and #71# for #rmarg#, there are 71 characters per line. The
user may set any of these variables as he chooses to adjust the page
layout .

The layout of footnotes on the page is described in Section 3.4.

The following commands affect the layout of the text on the page.

The command

.lmarg N
causes the left margin to be set to be just after column N, and the
command

.rmarg N
causes the right margin to be after column N. If N is missing in
“.lmarg”, the default of zero is taken instead.

The length of the page may be set by
.bline L
vhich specifies that the total spacing on the page 1is L. Default
provides for 66 lines on the page.

The commands " .hspacing”, “.headspace”, ".footspace”, and
" .fspacing” may be used to change the variables uwith the same names.
These variables control vertical spacing on the page, as described
earlier in this section. The wvalue of #topspace# may be set wuith
“.store”, and #topuwindow# may be set either with “.store”™ or with
“.set window”™, as described below and in Section 3.10.

It is convenient 1if the #lmarg# is aluways at zero for the bulk of
8 document, even though the user may want all the printing to be moved
to the right on the page. LO therefore provides a separate mechanism
for indenting all of a document: the window. Each 1line printed is
preceded by a number of spaces (default zero) that can be set by the
user. LO may be used to prepare a document that is to be printed on
both sides of the page. For such text, it 1is desirable to have a
large left margin on odd-numbered pages and a large right margin on
even-numbered pages. Thus, two window settings are available: one for
even-numbered pages and one for odd-numbered pages. As each line is
output, it is preceded by #window# spaces. Just before starting each
even-numbered pade, #uindow# is set to #ewindow#; and it is set to
#owindow# just before each odd-numbered page. The variables #ewindow#
and #owindou#, as well as #topuindow#, may be set with “.store® or

Basic LO Capabilities Page Layout 2.1

16

Wwith the “.set” command. For example, the command
.set wuindow both S
sets both #ewindow# and #owindow# to 5, and
.set window even 1, odd 5
sets #ewindow# to 1 and #owindow# to 5. #topuwindou# may also be set:
.set window odd 5, top 1x1, even 1
does the above and also sets #topuindou# to 1x1. 0f course, any
expression, as described in Section 1.3, may be used in place of the
constants in these examples.

2.2 — Text Control: These commands control the appearance of text on
the page.

After each 1line is printed the paper is upspaced by the current
value of the variable #lspacing#; the command
.lspacing L
may be used to set that variable. The default value is two (actually,

2%0), which provides double spacing. This document uses a value of
11,

To leave extra vertical spacing L after a line, use
.leave L

If L is missing it 1is taken as one (i.e., 1x0), which results in
leaving one full line of extra space. There are two restrictions to
the amount of space left: If leaving space causes the bottom of the
pade to be reached, the remaining space is lost and is not left at the
top of the next page. Also, this command will not leave any space at
the top of a page¢11l’, The command ~.need” (described just below) can
be used to insure that a given amount of space all appears on a single
page, if that is what is wanted. ~.leave” causes a break.

To force a line break with no other effect, use
.break
Text collected so far for the next line is output, and a new line is
started.

11> A convenient way to leave space L at the top of a page is to
follow either ~.plain” or “.triple ////~ by the command

.leave L - lspacing
The first command causes upspacing of #lspacing#, so that the total
space left is L.

end) =0 252 Text Control Basic LO Capabilities

1?7

The command
.indent N
forces a break and causes the next line (and only that line) to be
indented by N spaces from the current value of #lmarg#. If N is
negative the next line is “undented” (i.e., starts to the left of the
left margin), but it 1s a detected error if N + #lmarg# is negative.

Sometimes it is necessary that all of a certain item, such as a

figure, appear on the same page. For this purpose, the command
.need L

may be used to ensure that there 1s at least L vertlical spacing still
remaining on the page. If there 1s, the command has no effect; if
not, it causes a page eject. On the other hand, the command never
causes an eject if the paper is already at the top of the page¢ic>,
The command may be used to insure that a certain plece of text, such
as a flgure, all goes on the same page.

An obvious use of the concepts of ~.leave”, ~.need” and ~.indent”
is in starting a new paragraph: One wants some space between
paragraphs (as in this document); it is unaesthetic for there to be a
single line of the beginning of a new paragraph at the bottom of a
page; and a new paragraph is usually indented. For this reason the
command

.para
is provided. It is equivalent to the three commands

.leave paraspacing - lspacing
.need paraneed
.indent paraind

This leaves some extra blank space, ejects the paper if there is not
enough space remaining on the page, and causes the next 1line to be

indented. The default values for #paraspacing#, #paraneed#, and
#paraind# are 3x0, 3x0, and 5, respectively; the respective values for
this document are 2x0, 3%0, and 4. Commands of the same name are

provided to set these three varlables.

Sometimes it is desirable for a given field to start in a given
position on the page, it being understood that it is to go on the next

¢12> This prevents LO from looping trying to find enough space for an
excessively large need.

Basic LO Capabilities Text Control 2.2

18

line if that print position has already been reached. Examples in
this document are the table of variables in Chapter 4 and the complete
list of commands in Chapter 5. For this purpose the command
.charpos N

is provided. If at least one space remains before reaching column N,
this command causes extra spaces to be inserted so that the next text
character stored will be in column N; while if position N-1 has
already been passed a8 neuw line is started and the effect of
“.indent N” is simulated. In either case, the next character stored
11ill be into column N. The effect 1is something like a tab to column
N, uith the proviso that a new line is to be started first if column
N-1 has already been reached. The column number is taken with respect
to the current value of #lmarg#.

2.3 — Substitution: An important LO 1idea is the substitution 1into
text of the value of a variable. There are three contexts 1in which a
variable is replaced by the string representation of its value: in the
“.subst” command, in “.triple”, and in headers and footers. In all
three cases, the substitution algorithm 1is the same. The text in
vihich substitution is to be performed is scanned for the appearance of
variable names enclosed in “#°s, each such being replaced by the value
of the variable. To oversimplify the aldorithm, each instance such as
“#foo#” 1is replaced by the (string representation of the) wvalue of
variable #foo#, whether #foo# is built-in or user-defined. If the
variable is of type STRing, its value is used directly; if it is of
type INTeger, its value is converted to a string (with a leading -~
if necessary) and used; if it is LINe, the form “FxP~ is used, where
"F” is an integer representing the number of full 1lines and “P” the
number of part lines, with "P~ less than #partsperline#<13>; and it is
a detected error if the variable is of type BUFfer.

Sometimes it is desirable to have a8 "#~ in the line after substi-
tution. For this reason, N or more successive “#"s where N > 1 are
replaced by N-1 of them, with no substitution. This seems clear, but
the algorithm is not quite that simple. The string to be substituted

(13> In the present implementation in which #partsperline# is fixed
at two, "P~ is either zero or one.

2.2 - 2.3 Substitution Basic LO Capabilities

19

in is scanned from left to right, looking for “#"s, all other
characters being copled into the output. If two or more “#"s are
encountered, all but one are copled into the output and the scan
continues. If exactly one “#° 1is encountered, the “#~ and all
characters up to the following “#- are scanned. The characters
between the “#"s are looked up as a8 name€i4), the string
representatlon of that name is stored into the output, and the scan
cont inues.

Consider the effect of this method on the text
#abc##def#
in which wvarlables “#abc#~ and “#def#~ appear. Note that the two
adjacent “#°s in the middle of the 1line are NOT replaced by a single
“#~, as sugdested by the first description.

The user may, if he desires, specify &8 variable delimiter other

than “#°. For example, the command

.set variabledelimiter ?
or the abbreviated version

.set vd ?
may be used to set it to “?°, as described in Section 3.10. Note that
changing the variable delimiter will impact on substitution in headers
and footers.

As previously mentioned, one use of the substitution algorithm
just discussed is in the command “.subst”. LO interprets the command
.subst <text>
by first applying the substitution algorithm to the <text> and then
using the result as a line of input to LO. This line may be either
text or commands; indeed, the result may also be a “.subst”™ command.
For example, the command
.rmarg rmarg - 10
may be used to set the right margin to a value 10 less than its
previous value. The variable #rmarg# 1is accessed in expression
context and is not to be enclosed in “#~ symbols. The effect of
.subst .rmarg #rmarg# - 10

(14> These characters may insteag be an integer to represent a
parameter to a macro, as discussed in Section 3.6.

Basic LO Capabilities Substitution 2.3

20

would be the same, although LO would achieve the effect differently.
If the previous value of #rmarg# were (say) 60, then applying the
substitution algorithm to the above would yield

.rmarg 60 - 10
tihich would have the proper effect.

2.4 — Text Output: The commands discussed in this section actually
store certain text into LO's output.

To cause the text <text> to be displayed on a line by itself,
centered between the margins, use the command
.center <text»>
This first causes a break and then displays <text> centered. A
previous “.indent” is taken cognizance of 1in determing where to put
the text. It is a detected error if the text is too wide for the
current margins.

The command
triple “<textiy'<textay’<texta’

first forces a break. Next, substitution is performed in each of
<textiy, <text2», and <text3>, in precisely the manner discussed 1in
Section 2.3. Finally, <text1> (as it exists after the substitution)
is stored next to the left margin, <text2> centered on the page with
respect to the current margins, and <text3> next to the right margin.
(If there is a preceding ~.indent” command, it has its usual effect.)
The quote character need not be the single quote shoun - it 1is the
first non-blank character after the space following “.triple”. It |is
a detected error if there is not enough space on the line for all of
this. The parameter to “.triple” is a <triple>, and this term is used
in the remainder of this document.

One purpose for which this command is convenient 1is numbered
equations. For example, the command
driple /7/7f(x) = x2 + 2x + 1/(4.?2)/
causes the equation to be displayed centered and the equation number
to be right-justified, like this:
f(x) = x2 + 2x + 1 (4.7)

There is a special feature to facilitate preparation of displays
such as the Table of Contents of this document. As mentioned, it is a

2.3 - 2.4 Text COutput Basic LO Capabilities

21

detected error if the total width of the three parts of the triple
exceeds the space avallable on the line. However, a special check is
made after the excessive width is detected and before the error
messadge is given. If, after substitution, the leftmost character of
the center part is “#7¢15>, then just enough characters are stripped
from the left end of the center part to make it small enough to fit.
If not, the right end 1is similarly checked, with characters being
removed from the right end. If neither end 1s a “#~, then the error
is reported. Thus the line

.triple 'Ch 2: Basic LO Capabilities*## *13°
(assuming that there were enough dots in the center to make the whole
triple too wide) could be used to store the entry for this chapter in
the Table of Contents. The tuwo "#°s are needed so that one will be
left after the substitution. This example is considered 1in further
detail in Chapter 6.

Sometimes it is desirable that text appear in the output just as
it appears in the input. That 1is, the exact spacing in the input is
to be copied into the output. (For example, this is useful in tables,
such as the one on page 8.) LO provides several techniques to achieve
this effect. If only one verbatim line is to be stored, the command

.plain <text>
may be used. This forces a break and then puts <text> on a line by
itself, exactly as it appears in the input. A leading ~.” in <text>
is not interpreted as introducing a command.

Sometimes it is useful to include a lengthy block of text in the
output exactly as it appears 1in the input. One method of doing this
is to turn off “fill” mode, as discussed above 1in Section 1.1.
Another method is to use the command

.unproc
After this command appears, LO copies into its output all text, until
it encounters the command

.proc
Note that in this mode all commands (except of course ~.proc”™) are
just copied but not obeyed, while turning off “fill” permits all

<15> It is the current variable delimiter that is used.

Basic LO Capabilities Text Output 2.4

22

commands to be processed as usual. The effect of “.unproc” |is
terminated by the end of a buffer or the end of an input file, while
the effect of fill mode is independent of these.

Normally, as mentioned earlier, any sequence of spaces, tabs, and
carriage returns in the input is replaced by a single space. This is
not the case in the three contexts just discussed. Not only are
spaces copled verbatim, but tabs also may be given special effect.
Details of the tab processing are provided in Section 3.1.

2.5 - Headers and Footers: LO may be directed to print header
information at the top of each page, as well as footer information at
the bottom. Up to 10 lines of headers and 10 lines of footers are
allovied. They may be different on even and odd pages, to facilitate
the preparation of documents to be printed on both sides of the sheet
of paper. The header commands (" .header”, “.eheader”, “.oheader”) and
footer commands (".footer”, “.efooter”, ~.ofooter”) all operate
similarly, so it should be understood that the following discussion of
" .header” applies equally to all of them.

The command

.header N, <triple>
specifies header N, where 1 ¢ N ¢ 10, for both even and odd pages. A
<triple> is a three-part string, as discussed in Section 2.4 under the
command “.triple”. The <triple»> and the current values of #lmarg# and
#rmarg# are saved as header N. Each time a new page is started, each
header currently saved is processed as for “.triple”, first performing
substitution and then storing each part of the <triple>. In so doing,
the margins used are the values of #lmarg# and #rmarg# that were
stored with the header line, and not (necessarily) those in effect at
the time the new pade is started. Note particularly that the
substitution is performed when the page is started, and NOT when the
“.header” line 1is encountered, so that variables uhose value changes
vill print differently. For example, page numbers are requested by
placing “#padgeno#” in the «<triple> at the desired place, so the
command

.header 1, °''DRAFT'Page #pageno#’
causes a header line on each page with the text "DRAFT™ centered and
“Page xx” at the right edge, with as many print positions as required

2.4 - 2.5 Headers and Footers Basic LO Capabilities

23

for the current value of "xx*. Keep 1in mind that the variable
delimiter (default "#°) used is the one that happens to be in effect
at the time the header 1is printed, so great care should be used in
changing it.

Note the difference between a null header and &8 header with a
<triple> consisting of only the four break characters: The first
produces no header line; the second produces an empty header line. To
specify a null header, use no comma on the line.

Initially, all header and footer lines are null.

2.6 — Page Numbering: LO provides several faclilities to let the user
control the numbering of output pages. The command

.page N
causes first a break and then a page eject. If N is present, the next
page is numbered N (and the next N+i...); if not, the page numbering
continues unaltered.

At any moment while storing text 1into the output, the variable
#pageno# holds the number of the current page, and #nextpage# holds

the wvalue to be assigned for the next page. The proper way to alter
the page numbering sequence is to change #nextpage#, either with
.nextpage N
or
.page N

or by “.store“ing into #nextpage#. Changing #pageno# 1is seldom
useful, for two reasons. First, if there is a footer line involving
#pageno#, the page being output probably wants the old page number
rather than the new one. To see the second problem, it is first
necessary to know how LO processes page numbers. When a page eject
takes place, either because the page is full of text or because of the
*.page” command, the footers are printed with the current value of
#pageno# and #pageno# is then set to #nextpage#. Just before the
first line of text is stored into the next page, #pageno# is again set
to #nextpage# and then #nextpage# is incremented by one. Then the
headers are printed and then the text. Thus, setting #pagenc# by
“.store"ing into it is less than useful, since it has ' no permanent
effect. Note that footers are printed on page eject, while headers
are not printed until the first text line is stored on the new page.

Basic LO Capabilities Page Numbering 2.5 - 2.6

24

2.7 — Buffers: The program maintains buffers for accumulating lines
of text for later insertion into the output file or for rescanning as
input to LO. Comments in this document about “storing lines into the
output™ refer to adding lines to either the currently active buffer or
the output file. The command

.buffer B
is wused to switch output to buffer B. As a further effect, the
variable #actbuf# is set to the name of the buffer. If no buffer is

given in the command, output again 1is aimed at the output file, and
#actbuf# is set to the empty string. Suitching to a buffer causes
data to be appended to that buffer.

When suitching from the output file to a buffer, there is NOT a
line break. That is, partial output to the file is held while output
is to a buffer, and restored when output returns to the file. On the
other hand, switching output away from a buffer forces a line break in
that buffer.

To clear the contents of buffer B, give the command
.clear B

If no buffer is specified, the buffer currently active to receive
output 1is cleared. It is a detected error if this command is given
vihen output 1is to the output file. It is also a detected error if
buffer B 1is currently active, at any level, for input. This last
point 1is addressed at further length in Section 3.6 in which the use
of buffers as macros is discussed.

B may be used as described in Section 1.3 to determine the number
of lines 1in a buffer, and & may be used to determine the amount of
vertical spacing the buffer would take up were it “.insert~ed.

All buffers are initialized to be empty when they are first
declared.

It is a detected error to attempt to use the same buffer for both
input and output.

A buffer may either be inserted verbatim into the output, or it
may be rescanned as input to LO. The command
.insert B
permits 1inserting the contents of buffer B into the current output

2.7 Buf fers Basic LO Capabilities

25

(either buffer or output file). In this mode the text is set up as
lines when it is stored into the buffer, with vertical spacing
controlled by the value #lspacing# had when the buffer was created and
the line lengths, margins and indentations being similarly controlled.
Fage spacing is irrelevant to the creation of a buffer, page breaks
being inserted only as the text is finally output to the output file.

Usually the spacer “A” is replaced by space only when the text is
finally output to the file. Sometimes it 1is desirable that this
substitution be done as the buffer 1is being created, since it is
possible that a different spacer character may be in effect when the
buffer is finally output. At such times, deletion of the hyphenator
character should also be done as the buffer is being created rather
than when it is inserted. To achieve these effects, a buffer may be
specified as an “insert buffer” by issuing the command

.set on insert
vhen the buffer is active for output. The footnote buffer #fnbuf# is
an insert buffer, while all user-defined buffers are initialized to be
non-insert buffers.

The command
.rescan B
causes buffer B to be rescanned as input to LO. Arguments may be
passed to this rescan, as discussed under Macros in Section 3.6.

2.8 - User-Defined Variables: There has been much discussion of the
use of variables in various contexts, with most of the examples using
one of the many variables “built-in~ to LO. In addition, LO lets the
user declare his own variables, specifying for each the data type for
the possible values of that variable(16>,

A variable must be declared before it can be used, just as in many
programming languages. Four declaration commands are available:

(16> The following discussion presents the idea that a data type is
specified for each variable at the time of its declaration, and that
this type 1is forever associated with that variable. This is not, in
fact, the way LO works; it is the way I wish it worked. It's too late
to change it now, since there is too much existing LO input text for
me to make this non-upuard-comﬁatible change. I recommend that all
new LO text be prepared using the method about to be described.

Basic LO Capabilities User-Defined Variables 2.7 - 2.8

26

.declarebuf <«V-list»
.declareinteger «V-l1list»
.declareline <V-list»
.declarestring <«V-list»

Here «V-list> is a list of variables, separated by commas. Each
variable 1s declared to be of the type specified and initialized to a
default value. For BUFfers the default is an empty buffer; for
INTegers it 1is zero; for LINes it is ox0; and for strings it is the
empty string. (These defaults may be changed using

.set default ...
as described in Section 3.10.)

Unce a variable has been declared, either by one of the above
commands or by virtue of 1its being bullt-in, it may be accessed 1in
either expression or substitution context, as already described.
Further, except for those built-in variables that are read only, its
value may be changed by the command

.store V,<value»>
This changes the value of variable V to a new value of the same type
that V previously held. If V was type INTeger, <value> is scanned as
an integer; while if V was of type LINe, it is scanned as a line. If
V wuas of type STRing, all characters from just after the comma to the
ernd of the line are taken as the new value of V. It is a detected
error if V was of type BUFfer.

When a variable 1is no longer needed it may be discarded: The

command
.undeclare <V-list»

causes each variable in the list to be dropped from LO's table of
variables. If the variable was a buffer, the buffer is first cleared.
(It is a detected error to attempt to clear a buffer currently active
for input or output.) Undeclaring a built-in variable is permissible.
The effect is that the value of the variable is no longer available to
the user, although LO still knows about 1it. For example, undeclaring
#lmarg# makes the variable #lmarg# unavallable for expressions or
substitutions, but the user may still change the left mardin using the
command ~.lmarg”. However, he no longer has a way to determine what
value is in effect for the left margin.

2.8 User-Defined Variables Basic LO Capabilities

27

If a8 variable already declared is redeclared, the old value 1is
“pushed down” and is no longer accessible. Undeclaring it later
causes the old value to be “popped up® so as again to be in effect.
There is no limit to the number of "pushes” that may be in effect at
any moment. If the user wishes, he may direct LO to give him a
warning message if he redeclares a variable, using

.set on warn redeclare
to elicit a warning message on declaring user-defined variables, or
.set on wuarn redeclareperm
to elicit a message on redeclaring built-in variables, as described in
Section 3.10. The latter command also causes a warning on undeclaring
any bullt-in variable.

2.9 — Conditionals: There is a conditional command, to let the
continued operation of LO be dependent on the values of variables.
The command
Af Vy, <rel>, Vp, <texto

causes value Vi to be compared with value V3, where <rel> is one of
the relations “ge”, “gr”, "eq”, "ne”, "ls” or "le”. If the relation
holds, the <text> 1is processed as input to LO; otherwise, it is
ignored. The <text> may be either commands or text.

The values V; and V> are computed as if they appeared in LINe
context, with the exception that negative values are permitted. The
default conversions result in proper results if the expressions are
INTegers. Both of

.1f lspacing, eq, 2, ...
.if lspacing, eq, 2x0, ...

have the same effect. It is also true that both of

.if day, le, 2, ...
.1f day, le, 9x0,

have the same effect, although one would be unlikely to write the
second one since #day# is INTeger-valued.

The command “~.i1f” lets one control the execution of only one line
(although that line may have several commands on it). To control more
complex actions, the command

.skip N
may be used. The effect is to skip over and ignore the next N lines
of LO's input. The obvious use, of course, is

Basic LO Capabilities Conditionals 2.8 - 2.9

28

Af ..., .skip 5
For those vho do not like to count lines, the command
.skipto <label>
may be used. This causes LO to ignore all lines untll it encounters
.label <label>
in which the «<label»>s match¢17>, This latter command ls treated as a
comment if it 1s encountered in LO's processing. Thus one might have

Af ..., .skipto aaa
stuff...
.1abel aaa

for a one-armed conditional, or

JAf ..., .skipto aaa
stuff...
.skipto bbb
.label aaa
more stuff...
.label bbb
for a two-armed conditional. The effect of either “.skip™ or

" .skipto” is terminated by the end of an input source, elther a buffer
or a file, with a warning message to the user.

¢1?> Tuo labels match if the first three characters are the same and
they are of the same length. Thus ~“foobar~ matches “footle”, but
neither matches ~“foolish~.

2.9 Conditionals Basic LO Capabilities

29

Chapter 3: Advanced LO Topics

This chapter continues the discussion of Chapter 2, but it
addresses topics less likely to be of interest to the beginner. For
that reason, the discussion is slightly more terse, as well as more
complete.

3.1 — Tabs: As discussed in Section 1.1, LO normally treats as a
single space any concatenation of spaces, tabs, and carriage-returns
that appears in the input. Also mentioned there 1is that specisal
processing of tabs is possible in text 1in “.plain” commands and 1in
text printed when fill mode is off and under the control of “.unproc”.
(See also Section 2.4.) The processing is that each tab encountered
in such text is replaced by an appropriate number of spaces before any
further processing. To use this feature, one must tell LO where it is
to assume tabstops in the input, using the command
.tabsin Ni, N2, ...

Here the Nk are INTeger expressions, positive and each greater than
the preceding one, that specify the positions of the tabs in the input
medium. In scanning the 1input text, LO keeps track of the current
print position of the input. (Proper account is taken of backspace as
viell as nonspacing characters such as underscore.) Then each tab
character is replaced by the number of spaces necessary to reach the
next tab stop as defined by the last “.tabsin” command.

Note that tihis complete discussion is with respect to the input
text only. Parameters such as #lmarg# and #indent# and #window# do
not impact on this processing.

For tabs uniformly set across the carriage, the usage
.tabsin x N
may be used to set tabs every N positions. That is, the two commands

.tabsin x 60
.tabsin 60, 120, 180, 240, 300

are equivalent in effect. (The maximum line width is 300, so the last
stop is at position 300.)

Advanced LO Topics Tabs 3.0 - 3.1

30

In the following examples, the notation f is used to stand for a
tab character and ¥ for backspace. Following the command
.tabsin 4, 8, 12, 20, 25
the following pairs of lines (with ~A” used in the second line for
space) are equivalent in effect:
.plain abfcdfeftghti]
.plain abhhcdhhet hhghhhhhhhi]

.plain abcdeffg
.plain abcdehhhfg

.plain abcdetfg
.plain abcdehhhfyg

.plain |B-1z
plain |B-AAAz

This last prints as if the user had typed
.plain ¢ z

The defasult setting when LO starts processing is no tabs at all.
This setting may be restored by using ~.tabsin” uith no arguments.

The command ~.tabsout” 1is proposed for specifying tab stops in
LO's output. It is not yet implemented, and is wunlikely to be unless
3 desire is expressed.

3.2 — Sentence Ending: LO inserts an extra space between sentences.
LO assumes a8 sentence end when one word ends with period (or any other
sentence ENDER) and the next word starts with an upper-case letter (or
other sentence STARTER). Further, a right parenthesis (or other RPAR)
appearing after an ENDER also indicates s sentence end. Finally, a
vword only one or tuwo characters long (including the ENDER) is not
interpreted as the last one in a sentence, as described below. The
set of ENDERs 1is initially =.”, “?” and ~:7¢18>, and ")~ is the only
member of RPAR. The members of STARTER are initially the upper-case
letters and “(*. Membership in each of these three sets is controlled
by the ".set” command. The command
.set starter <char> <char> ...

causes each of the <char>s to be added to the set of the STARTERs,
while

<18> The colon is the TX-2 character red hand.

3.1 - 3.2 Sentence Ending Advanced LO Topics

31

.set off starter <char»> <char> ...
causes the listed <char>s to be removed from the set of STARTERs.
Similar options are provided for controlling membership in ENDER and
RPAR. Details are provided in Section 3.10. In this document, the
STARTERs consist of the upper-case letters and (- (default), along
with "=, =87, “¥~, “A", “#°, "¢” and the open-quote character. The
only extra ENDER is the TX-2 character NOPMAL.

A special case is made of a “word” exactly two characters long,
the second of which is an ENDER. In typing a person’s name with an
initial, LO would normally detect a sentence end after the initial
(since the next name would start with an upper case letter). Since an
extra space is not wanted in this case, LO does not assume such a
short word to be a sentence ender. The user may override this default
by the command

.set on wide
See Section 3.10 for further details.

3.3 — Hvphenation: Sometimes fill mode results in a rather short line
if the next word to be stored is rather long. If adjust mode is also
on, an unaesthetically large amount of blank space may be left betueen
words. In this situation the usual solution (as in books and newuspa-
pers) is to hyphenate the offending long word. It would be pleasant
if LO had an effective algorithm for deciding where to insert hyphens
in English words, but I know of no such¢19>,

Since LO 1is not intelligent enough to determine where to put
hyphens, provision has been made for the user to tell LO where hyphens
are permissible. If fill mode results in more than four spaces being
left at the end of a line, an attempt 1is made to hyphenate the next
word. (Hyphenation is attempted only if the user has specified a
hyphenat ion character. Default is no hyphenation; the remainder of
this discussion assumes that "~ has been set as the hyphenator.) The
word is examined for the presence of the character “~", and each is
assumed to appear before a syllable break. L3 picks the longest
prefix that will f{it, inserts a hyphen after it, and prints the rest

of the word on the next line. Further, each instance of “~" in the

(19> I will welcome suggestions from users.

Advanced LO Topics Hyphenat ion 3.2 - 3.3

32

input file is removed from the output. Finally, if the user does not

like "~*, he may specify some other hyphenation character, using the
command

.set hyphenator O
or the abbreviated version

.set hy O
to set the hyphenator to “0". Obviously, this part of this document
uses a hyphenator other than ~~*. It 1is convenient to use one of
TX-2's nonspacing characters for hyphenation.

There is interaction between hyphenation and the use of the spacer
character "4~ (default). If the “~* appears before or after an “A”7,
the “A” (as well as any “A"s that immediately precede or follow it) is
deleted and no hyphen is inserted. This allows the user, by inserting
an “hA", to specify that spaces are not to be inserted during
adjustment, while still permitting LO to break the line at that point.
Consider, for example, a name such as “A. B. Smith”. This looks ugly
if LO 1inserts adjustment spaces after an initial, like this:
“"A. B. Smith”. If the user types “A.AB.ASmith” no spaces will be
inserted, but LO will perforce put the entire name on a single line.
Typing instead “A.~AB.~ASmith” will result in no spaces being inserted
during adjustment, but will permit LO to break the line after either
initial. “A.A~B.A~Smith® would work equally well. This feature is
also useful in equations that appear in text.

There 1is one other special case in hyphenation: If the last
character of a syllable is “-*, L0 does not insert an extra hyphen.
This lets the user permit a line break at a place that already
contains a hyphen. For example, if LO breaks the typed word
“upper-~case” it will put “upper-” on the first line and “case” on the
second, not inserting the aobviously unwanted hyphen.

3.4 — Footnotes: A convenient mechanism 1is provided for setting up
footnotes. The sequence
.footnote

<text> (perhaps many lines)

:féotnote end
causes the <text> appearing between the two ~.footnote” commands to be
set up as a footnote. The footnote is saved (in the buffer #fnbuf#)

3.3 - 3.4 Footnotes Advanced LO Toplcs

33

and 1is inserted into the output at the bottom of the page. This
sequence does not cause a line break in the main body of the text.
All the above sequence must be in the same input source, unless the
<text> contains completely nested inclusions. That 1is, it 1is not
possible to have a macro one of whose effects is to 1initiate a
footnote.

It is the user's responsibility to store the reference to the
footnote - there is nothing automatic about this. The user must be
careful to insure that the footnote reference and the footnote appear
on the same page. Suppose that LO encounters the text

I am! some text containing a footnote reference.
.footnote

1. I am the text of the footnote.

.footnote end

It could happen that the end of a page could occur, say, after the
vord “containing”, in which case the footnote would be on the next
page. To be guaranteed safety, the footnote should appear immediately
after the reference, like this:

I aml

.footnote

1. I am the text of the footnote.
.footnote end

some text containing a footnote reference.

Section 3.6 shows the macro used to store footnotes in this document.

The usual printer’'s conventions regarding footnotes are followed.
If the footnote occurs on the last line of a page, it is held till the
next page. If a footnote is too long to fit on the page, the excess
is continued on the next page. A break line 1is printed (with an
#lmarg# of zero) after the last text line and before the footnote.
The default footnote break is "----cccecmccccc—- ", a string of 20
minus signs<20>, The user may change the footnote break by storing
into the bullt-in STRing variable #fnbreak#, wuith ~.store”. The
amount of space between the last text line and the break ls given by
the (LIN-valued) variable #fnspi#. #fnsp2# specifies the spacing
between the break and the beginning of the footnote text, and #fnsp3#

<20> This document uses a character set in which red minus prints as
“—* (as opposed to ~-" for the usual minus) and the footnote break is
30 red minus signs.

Advanced LO Topics Footnotes 3.4

34

specifies the space between successive footnotes. Defaults are 20,
10 and 2x0 for #fnspi#, #fnsp2# and #fnsp3#, respectively; for this
document , their respective values are i1x0, Ox1 and Oxi1. They may be
set using “.store”.

Before setting up a footnote, LO sets #lmarg#, #rmarg#, and
#lspacing# to #fnlmarg#, #fnrmarg#, and #fnlspacing#, respectively.
(Their respective defaults are o0, 71, and 1%0.) On completion of
setting the footnote, they revert to their old values. They may be
set using “.store”. If any flags are pending when the footnote is
encountered (see Section 3.5) they are held until the footnote is
complete. On the other hand, flags may be set up as wusual in a
footnote if the ~.flag” command occurs after the “.footnote” command.

It 1is sometimes desirable to suppress the printing of footnotes,
such as while outputting a figure. The command
.footnote push
causes all pending footnote text to be held in abeyance until the
command
.footnote pop
appears.

3.5 — Flags: The user may have a flag stored in the right margin, as
shoun. The command

.flag N
causes the next N lines to be flagged, where if N 1is missing it is
taken as one. Each ~.flag” command supersedes any previous such
command, so that a large block of text may all be flagged by the
sequence

.flag 9999

<text>, extending over many lines

.break

.flag o
The ~.break” command 1is needed to insure that the last line 1is
flagded.

The user may select a flagger other than “x~. The command
.set flagder xxxx
sets the flagder to “xxxx”. If an empty flagder 1is specified, no
flags will be printed, even if “.flag”™ commands appear. The variable

3.4 - 3.5 Flags Advanced LO Topics

35

#flagger# holds the flag currently in use. #flagger# may be changed
only with the “.set” command just shoun and not with ~.store”, since
it is read-only.

The default position for the flag is in column 7?4 — three to the
right of rmarg. The user may set a different value by “.store“ing
into #fladgcol#. If an adequately wuide uindou is being used (see the
discussion of windows in Section 2.1) the flag may be stored to the
left of the text by specifying a negative value of #flagcol#.

A flagged line going into a8 buffer for later “.insert”ion is
marked in the buffer as flagged and is printed with the flag when the
buffer is ~.insert”ed. The flag and flag column used for printing are
those in effect when the line is stored into the buffer, and not
(necessarily) those in effect at the time of printing.

See Section 3.4 for special treatment of flags with respect to
footnotes.

3.6 — Macros: Rescanning a buffer provides a macro-like ability in
LO, and this facility is augmented by permitting the user to pass
parameters to the rescan. For example, the command

.rescan foo zilch barf
causes the contents of buffer “foo™ to be rescanned as input to LO.
During this scanning any instance of “#1#~ to be substituted for (as
in the ".subst” command - see Section 2.3) is replaced by "“zilch™, and
“#2#~ 1s replaced by “barf”. Further, during this rescanning the
variable #params# has the value two, indicating that two parameters
viere passed in invoking the macro. The command word “rescan” need not
be typed; the line

.foo zilch barf
is equivalent to the above. This lets the user use macros with syntax
similar to that of built-in commands.

The command syntax permits three types of arguments to be passed:
If the first character is an upper- or lower-case letter, a digit, or
the character ~.”, a sequence of such characters is read and passed as
the argument. The actual parameter is the characters read. If the

first character is "+~, the expression up to the next comma or end of
line 1s evaluated as an integer and the parameter 1is the string

Advanced LO Topics Macros 3.5 - 3.6

36

representation of that integer. If the first character is any other
character, it is taken as a quote character and the parameter is all
text up to <(but not including) the next occurrence of that quote
character. A comma may be used optionally after the first or third
types of arguments; it is required after the second type unless that
argument ends the line.

Invoking a macro causes the old values of #params# and of the
parameters to be “pushed doun” before the values associated with the
call are stored; returning from a macro causes these to be restored.
Thus a macro may continue to access its oun parameters with no trouble
after invoking another macro.

The arguments passed to LO from the BT wvhen LO is invoked may be
accessed with this parameter mechanism. #1# refers to the name of the
input file specified to BT and #2# to the name of the output file.
(It is ~“.lo” 1if no output file is specified.) Any other arguments
specified are similarly available. This fact is alluded to in Section
7.1. #params# holds the number of parameters passed through the BT.

A macro overrides a built-in name, so that, for example, existence
of a buffer named “para” keeps the user from accessing the ~.para”
command. (Of course he may still access it through its abbreviation
“.pr”.) This overriding may be suppressed by using "+~ just after the
.7, so that

.+para
will 1invoke “.para” even in the above case. A variable named “para”
uith type other than BUFfer has no effect on the accessibility of
“.para”.

Since a macro usually contains command lines starting with ~.7, a
convenient mechanism is provided to store such lines into LO's output.
Any line starting with ~..” has the first =.” stripped off, and the
rest of the 1line 1is stored into the output verbatim. The values of
#lmarg# and #indent# are ignored.

A special case 1is made when no arguments are passed. In this
case, the body of the macro may access the parameters that were
available 1in the caller's environment. Also, #params# has the value
it previously had. Sometimes it is desirable to pass zero arguments
explicitly, with #params# equal to zero. For this reason, the command

3.6 Macros Advanced LO Topics

37

.rescan foo
invokes buffer “foo” with the parameters that were in force in the
calling environment, while the command

.foo
invokes “foo” with #params# equal to zero. If parameters are passed
the tuwo syntaxes are identical.

The command
.end
appearing in the body of a macro causes expansion of that macro to
terminate and control to return to the caller on completion of
processing the line containing this command. This 1is useful, for
example, in conditionals. (See Section 2.9.) Normally it 1is a
detected error if a buffer attempts to “.clear” itself. There are two
exceptions to this restriction: if the ~“.clear” command occurs on the
last 1line of the buffer, or if it occurs on any line after the
appearance of “.end” on that line.

Recursive macro calls are permitted in which a macro invokes
itself. Of course a conditional is needed somewhere to prevent an
infinite loop. There are two limitations to the maximum recursion
depth. LO maintains a stack of input sources with one entry for each
“.include” file and one entry for each macro currently in force. The
maximum depth of this stack is currently 40 (although this could be
changed easily if it turns out to be a restriction). The second limit
is the BCPL runtime stack. Care in coding can minimize the impact of
these tuo restrictions. If the recursive call is on the last line of
8 buffer, or if it is preceded on 1its line by “.end”, then no neu
entry 1is made in the input stack. This fact can easily be taken
advantage of to keep 40 inputs from beling a significant limit. To
minimize the use of BCPL stack, be sure the recursive call is not on a
line with “.subst”. Recursive use of ".include” will work but is not
recommended; 1t is exceedingly inefficient. The limitation 1in this
case is virtual address space required.

A simple example of a macro is the one used in this document for
storing footnotes. Text substantially like the following appears as
part of this document:

Advanced LO Topics Macros 3.6

38

.declareinteger nll .store n, 1 | footnote counter
.declarebuf fnll .buffer fn

. .subst #1#<HNFOH4

. .footnote

. .subst <#n#rhA¥3H

..footnote end

..5toren, n + 1

buffer

This defines a macro that takes three parameters, as indicated by the
fact that the largest integer between “#”s is three. Now, note the
footnote that appears at the bottom of this page¢el>. This appears as
a result of the following lines of input to LO:

Now, note the footnote that appears at the bottom of this
.fn ‘page’' '.' ']l am a sample footnote.’
This appears as a result of...

The footnote reference occurs between the first and second parameters
to ".fn" uithout any added spaces. The variable #n# 1s an integer
that counts footnotes. This example will result in footnotes being
numbered consecutively throughout the document; a modification to
reset the counter on each new page is shown in the next section.

3.7 - Traps: LO permits the user to specify any of three traps. A
trap in LO, as 1in many programming languages, permits the user to
specify that a certain action is to be performed any time a certain
event takes place¢22’, Three events may be trapped in LO: the end of
a line of output, before printing headers at the top of a new page,
and before printing any text at the top of a new page (but after
printing the headers). The command
.trap <event> caction»

is used to set a trap. Here <event> is any of “endofline” (or “eol”),
“neupage” (or “np”), or “pagetop” (or “pt~), matching the three events
ment ioned above, and “<action>” is any line of text suitable for input
to LO. The effect of this command is that <action> 1is stored as the
value of the string-valued variable named <event»><¢23>, WUWhen any of
the three trappable events occurs, the appropriate variable 1is
examined. If its value 1is other than the empty string, the following

<21> 1 am a sample footnote.
<22> A trap is similar to the “on condition ...” facility in PL/I.

(23> For example, setting a trap for “endofline” causes <action> to
be stored as the value of the variable #endofline#.

3.6 - 3.7 Traps Advanced LO Topics

39

actions are performed: First, the value of the variable is saved;
then the variable is set to the empty string; and finally the saved
value 1is processed as a line of input to LO. With the exception

ment ioned below, this may involve any of LO's capabilities, including
storing text or giving command lines. If the user desires an effect
too complex to be described conveniently on one line, the action may
be to invoke a macro which does the work.

Normally, a trap 1is executed only once and then cleared, as just
described. However, if the command
.reset
is encountered while processing the <action> 1line, then that trap is
reset on completion of its processing.

There 1s one exception to the ability to do anything while
processing a trap: The “newpage” trap takes place at the top of a
page before the headers are stored. LO is unprepared at this time to
store text into the output, so no attempt should be made to do so.
Text to appear at the top of the next page should be stored with the
“pagetop” trap. The column headers for the three tables in Chapter 8
are stored this way.

A simple example may be of interest. Suppose page numbering in
roman numerals is desired. Although LO provides for conversion of an
integer to roman numeral form, no automatic mechanism s provided for
storing roman page numbers; it must be programmed. Normally, page
numbering is achieved by referring to the variable #pageno# in a3
header or footer. Suppose the user uses instead the variable
#page .roman# in his header, and includes in his input to LO the text

.trap newpage .storeroman page.roman, pagenoll .reset
This means that at the beginning of each page, after setting #pageno#
but before printing headers, the variable #page.roman# is set to the
string representing the roman numeral equivalent of #pageno#, and the
trap is reset. (See the description of the “.storeroman™ command in
Chapter 5.)

As another example, consider the footnote macro shoun on page 38.
To reset the footnote counter on each new page, the command
.trap neupage .store n, il .reset
might be used.

Advanced LO Topics Traps 3.7

40

A trap may be cleared by storing the empty string into the
associated variable, either with “.store” or
.trap <event»

A “pagetop” trap still pending at the end of the 1input text is
processed. However, any “.reset” encountered while processing this
trap is ignored. Thus if a “pagetop” trap with reset is being used to
print column headings, there will be one page at the end of the output
vith column headings only, but there will be no more of them.

To invoke a trap previously set without waiting for the associated

event, use

.trap do <event»>
This causes the trap stored for <event> to be performed and then
cleared <(unless it “.reset”s itself). It works even if there is no
trap currently set. To determine whether a trap, say “endofline”, is
currently set, the code

.if A endofline, gr, o0,
is convenient.

3.8 — Input/0Output: LO provides various ways to communicate with the
world around it while it is running: APEX files may be read or
Wwritten; commands may be directed to APEX; and there may be communica-
tion with the user’'s console. These abilities are discussed in this
section.

To include a file from the current APEX directory, use
.include <file»>
there <file> is the name of an APEX file. This command is replaced by

the contents of the named file. Note that certain types of
processing, such as “.unproc”, footnotes, “.skip”, etc., may not
extend over the end of a file. If these are started in the file, they
must also end in that file. No direct mechanism 1is provided for

including a file from another directory. Houever, the ~“.bt” command
described later in this section may be used to SGET a copy of the file
into a dot name, and that may then be “.include”ed.

The command
.end
causes the rest of the input file to be 1ignored. It 1is useful in

3.7 - 3.8 Input /0ut put Advanced LO Topics

41

conditionals - see Section 2.9. Note that this command also may be
used to terminate a macro, as described in Section 3.6.

The command
.output B, <«file»
causes the contents of buffer B to be wuritten as an APEX file named
<file>. (The comma 1s optional.) Each line is copied directly
followed by a single new-line character. Format concepts such as
pagination, headers and footers, and the value of #lspacing# are
irrelevant in this process.

Any BT commands may be invoked from LO. The command
bt <text>
causes the «<text> (uith an appended carriage return) to be passed to
5BTF on the next map.

The command
.console <¢text>
causes the <text> to be written on the user's console. If there is no
<text>, then the user is given a prompt to invite him to type a line,
and LO then processes that line as input. (The prompt 1is <newline»
“?” <tab>.) NO and DELETE may be used as usual under APEX for line
delete and character erase, respectively. The output appears on the
console even if the “e” option was used in invoking LO.

One use of “.console” 1is in debugging complex macros. For
example, to see what value variable #zilch# has at a certain point 1in
the processing, include the line

.subst .console the value of zilch is #zllch#

3.9 - The Command “.overstrike”: LO provides a command to facilitate
the preparation of overstruck text, usually for underlining. The
command is
.overstrike <quoted word> <text>

The first non-blank character after the space after “overstrike” is
taken as a quote character, and all characters up to the next
occurrence of that character are taken as the <quoted word>. The
<text> (uhich starts immediately after the second occurrence of the
quote character) 1is scanned and each overstrikeable character |is
preceded by the characters in <quoted word>. The result 1is then

Advanced LO Topics The Command “.overstrike” 3.8 - 3.9

42

processed as usual by LO.

Underscore is frequently used for the <quoted word>, as in
.overstrike '’ stuff to be printed
which has the same effect as if the user had typed
stuff to be printed
Recall that the character underscore on TX-2 is a nonspacing
character.

The overstrikeable characters are initially the letters and
digits; this set may be altered by the command
.set overstrike <char» <char> ...
to mark the indicated characters as being overstrikeable, as described
in Section 3.10. 1In this document, the period ~.” has been marked
overstrikeable, as may be seen in the chapter and section headings.

3.10 - The Command ~.set”: The command line ~.set” may be used to
control certain of LO°'s 1internal parameters. It turns on or off
certain switches, as determined by SWITCH. Normally SWITCH is ON; it
may be turned off for the duration of a particular “.set” line by the
control “off”, as described below.

This command causes a break only for the “fill” option and not for
any of its other options.

“.set” 1is followed optionally by either “on™ or “off~, followed by
a control vword uwhich, in turn, 1is folloued by optional parameters.
All of the options are described in the remainder of this section, and
a8 tabular summary of the options appears in Section 8.3. Note that
abbreviations are shown for some of the options.

adjust The adjust suwitch is set to the value of SWITCH. Right
margins are lined up (as in this document) when the switch
is ON. The default value is ON.

default <tvpe> <value>

e default value for neuly declared variables 1s set. If
<type> is "int” or “INT®, <value> is read as an INTeger
value and that value is hereafter used as the default value
for variables declared with “.declareinteger”. Similarly,
if <type> is "1lin~ or “LIN~, <value»> as a LINe 1s used for
" .declareline”; and if <type> is “str” or "STR” the rest of
the line is taken as the <value> and is used for ~.declare-
string”. If the line is empty after the word “default”, the
usual defaults are reset: 0 for INT, ox0 for LIN, and the

3.9 - 3.10 The Command ~.set” Advanced LO Topics

43

empty string for STR.

ender <char> <char> ...
Each character listed is either added to or deleted from the
set of sentence enders, as SWITCH is ON or OFF. This set is
used to decide when to insert an extra space at the end of a

sentence. If no character is given, all graphical
characters are set. The default enders are ~.%, “?7, and
“:7¢24>, Gee Section 3.2.

fill The fill switch is set to the value of SWITCH. When it is

ON (default), as many words as possible are added to each
output 1line so as to fill it; while otherwise text 1lines
from the input are copied into the output. This sub-command
causes a break. See the discussion in Section 1.1.

flagger <word>
The characters in <word> are used hereafter instead of "=~
(default) for flags controlled by “.flag™. If <word> is
missing, no flags will be printed. See Section 3.5.

hyphenator <char»
hy <char> The hyphenation indicator 1is set to <char>. If «char> is

missing no hyphenation is attempted. The default is no
hyphenation. See Section 3.3.
insert If output is to a buffer (the command is otherwise illegal),

that buffer's 1insert suitch is set to SWITCH. The default
is OFF for all user-declared buffers; it 1is ON for the
built-in buffer #fnbuf# used for storing footnotes. HWhen a
line is stored into an insert buffer, any spacer is replaced
by a space character and any hyphenator 1is deleted.
Further, when an insert buffer is “.insert”ed, no processing
is done for any spacer or hyphenator. See Section 2.7.

off SWITCH 1is turned OFF for the rest of the line. It is
initially ON at the beginning of processing each ~“.set”
command .

on SHITCH is turned ON for the rest of the line. Since it is

ON by default this option 1is not really needed, but it
provides a symmetry that seems pleasing.

overstrike <char> <char> ...

ov <char> <char> ...
Each character listed is either added to or removed from the
set of overstrikeable characters, as SWITCH 1is ON or OFF.
(The overstrikeable characters are those used by the
“.overstrike” command, described in Section 3.9.) The
appearance of any lower- (upper-) case letter controls all
the lower- (upper-) case letters, just as the aﬁpearance of
any digit controls all the digits. If no character 1is
given, all printable characters are set. The default set of
overstrikeable characters is the upper- and lower-case
letters and the digits. It is not gossible to specify space
as being overstrikeable, although the effect may be achieved

<24> The colon is red hand.

Advanced LO Topics The Command “.set” 3.10

44

with judicious use of “A~.

rpar <char> <char> ...
This controls membership in the right parenthesis set for
extra space insertion at the end of a sentence. Operation
is as for “ender”, above. The default set contains only the
right parenthesis “)”. See Section 3.2.

spacer <char»
The character <char> is used hereafter instead of ™A~
(defasult) as the nonbresking space.

starter <char> <char> ...
This controls membership in the set of sentence starters
used to determine when to insert a space betiieen sentences.
Operation is as for “ender” above. he default set is the
upper case letters and the left parenthesis ~(~. See
Section 3.2.

variabledelimiter <char>

vd <char> The character «<char> 1is used hereafter instead of “#~
(default) to delimit wvariables in “.subst” commands and in
triples, including headers and footers. Because headers can
be printed at any time and the substitution in them uses the
current variabledelimiter, it is best if this is changed
only at the beginning of 8 job, or not at all. See Section
2.3.

vidf This is to be used if the output is for a device with a
variable width type font. See Section 3.12.

warn <option> <option> ...
The user may, if he chooses, request LO to warn him about
certain situations. If <option> is “redeclare” (or “rd~),
any redeclaration of a8 previocusly declared user variable
sl I produce a8 warning message. s <option> is
“redeclareperm” (or “rdp~), any redeclaration of 8 built-in
variable will produce a3 warning, as will any sattempt to
undeclare such a variable. Finally, if <option> |is
“conversion® (or “cv™), LO will warn the wuser of any
conversion betueen INT and LIN, and uill warn about the use
of any of the f{following commands: ~.declare”, “.store-

integer”, “.storeline”, or “.storestring”. Use of this
command turns the relevant warning option ON or OFF,
depending on SWITCH. “on” or “off” may be inserted among
the options to alter the sense of SWITCH. Warnings are
discussed in Section 1.5.

uide A suitch W is turned ON or OFF, depending on SWITCH. When W

is ON, a8 word one or tuo characters in length may end a
sentence, while if W is OFF such & word is never assumed to
end a sentence, even if ends uith an ENDER. See Section 3.2
for further discussion. Default is OFF.

width N, <char»> <char» 5
The named characters are treated hereafter by LO as if their
printed width were N. This option may be used only if a
variable width font has been specified. See Section 3.12.

3.10 The Command “.set” Advanced LO Topics

45

window <option> V, <optiorm> V, ...

This command controls the page windou. If <option> 1is
“even”, “odd” or “both”, then V must be an INTeger valued
expression. Depending on <option>, #ewindow#, #owindow# or
both of them are set to V. On each even-numbered page,
#euindow# spaces are left before each line; #ouindow# spaces
are left on each odd-numbered page. If <option> is “top”, V
must be LINe valued, and #topwindow# is set to that wvalue.
Thereafter that much vertical space is left at the top of
each page, the space not being part of #bline#. All three
windows are default zero. See Section 2.1.

3.11 — The Command “.expand”: A mechanism 1is provided to iterate
through a sequence of arguments. The command

.expand <command>, N, Ai, A2,
causes <command>, which may be either a built-in LO command or a
user-defined macro, to be invoked repeatedly, each time with N (or
feuer) arguments, until all the arguments to “.expand” are used up.
That is, the line

.expand foo, N, A1, Az, A3,
is equivalent to the lines

d00 Ay A2y we cw NN
.foo AN+1. AN+2, e o0y AZN

If the number of arguments supplied to “.expand~ is not a multiple of
N, there will be fewer than N arguments to the last call to “foo”.
The syntax of parameters to this command is the same as that for
macros, as described on page 35. For example, the command

.expand store, 2, lspacing, "1x1‘', lmarg, 0, fnbreak, ‘----
is equivalent to the commands

.store lspacing,1x1
.store lmarg,0
.store fnbreak,----

A convenient use of this command is to set switches in LO from the
BT. As described in Sections 7.1 and 3.6, the variable #params# holds
the number of parameters supplied to LO from the BT. If one types the
command
sdo art lo stuff - BEGIN lspacing 1 rmarg 60 WORD-EXAM
to the BT¢25>, then when LO starts its work #1# will hold “stuff”, #2#

<25> Here “BEGIN~ and “WORD-EXAM~ refer to the TX-2 characters used
by sBT as open and close quotes, respectively.

Advanced LO Topics The Command ~.expand”™ 3.10 - 3.11

46

will hold “.lo”, #3# will hold “lspacing 1 rmarg 60~, and #params will
hold 3. 1If the command

.if, params, ge, 3, .subst expand, store, 2, #3#
appears near the beginning of file “stuff”, the effect will be to set
single spacing and a8 right margin of 60. The ~.if” lets it be
optional to pass the third parameter.

3.12 - Variable Width Fonts: Most typewriters and most computer
output devices print all characters equally uide. The term “variable
width font~ suggests a type font 1in which, for example, the "m” is
viider than the “i~. A mechanism 1is contemplated for LO which will
facilitate preparation of documents for such devices. It is not yet
implemented, and until it is the "vuf~ and "width” options to “.set”
are treated as erroneous. Please see the author for further
information or to offer suggestions.

3.11 - 3.12 Variable Width Fonts Advanced LO Topics

47

Chapter 4: Built-In Variables

A table of variables is maintained by LO. Some initial variables
are declared by the program and are updated as the program proceeds
uith the text processing. Others are declared by the user, as
described in Sections 1.2 and 2.8. This chapter lists all the built-
in variables and describes their use in LO.

The initially declared wvariables uith their default values are
listed in alphabetic order on the next few pages. In the column
headed “Type~, N indicates INTeger, S indicates STRing, L indicates
LINe number, and B indicates buffer. A preceding ~x~ indicates that
the variable 1s read only and may not be altered by a “.store”
command.

The column headed “Val~ shows each variable's default value - the
value to which it is 1initialized when LO starts its work. For tvpe
LIN the value is the number of whole lines. An entry of =~ means
that the value is stated in the “Description” to the right. An entry
of “~" means that the initial value is irrelevent. An entry of “--~
indicates that the 1initial value is not the same each time LO is
invoked, as {follous: The integer variables #year#, #month#, #dav#,
#ueekday#, #hour#, #minute# and #second# are 1initialized to the
current date and time each time LO is invoked; they are not updated

during LO's processing. The variable #loginname# is initialized to
the user’s login name as derived from APEX, with a preceding script
"g” if quasi. The wvariable #params# is set to the number of

parameters supplied to LO when it is invoked from the BT, as described
in Sections 7.1 and 3.6.

Any of these variables (uith a feu exceptions) may be assigned a
different value to impact on the operation of LO in the abvious way.
The read-only variables may be changed only with special commands
appropriate for each, while the others may be changed with special
commands or with “.store”.

Built-In Variables 4.0

48

Declaring a neu variable with the same name or undeclaring one of
these variables causes it to lose its special sbility to affect LO's
operation. No error message is given in this case<26>, It is a
detected error to attempt to change the type of a system variable wWith
a ".store...” command.

Section 8.1 lists all of LO's predefined variables, along with a
reference to the section in which each is discussed.

Name Val Type Description

actbuf + %5 The name of the buffer currently receiving output,
or the empty string if output is to the file. is
variable 1is set by “.buffer”; it is initialized to
the empty string.

bline 66 L Total vertical spacing on each page, exclusive of
that used by #topwindow#. It is set by “.bline”.
davy -- N Day of the month -1, 2, ..., 31.

efooter 0 =N Number of even footer lines currently in force.
eheader 0o xN Number of even header lines currently in force.

endofline
- S Trap action to be obeyed after outputting the next
complete text line. It 1is set by “.trap™; it is
initialized to the empty string.

ewindow 0 N Spaces on the left of each even-numbered page. It
is set by ".set window ...~

flagcol 74 N The column in which to start storing flags. (See
Section 3.5.) A negative value may be used to store
a flag in the left window.

flagger + %5 Character(s) used to flag lines under the control of
=4t lag®. This variable is set by “.set flagger

.. 3 it is initialized to "=~
flagsu 0 N Number of lines yet to be flagged. If at the end of

a line this variable is positive, a flag is printed
on the line and the variable is decremented by one.

fnbreak - S Characters used to separate footnotes from the
preceding text. It is initialized to a string of 20
minus signs.

f nbuf + B The buffer used to hold footnotes waiting to be
processed. It is 1initialized to be an empty buffer

26> An optional warning message will be given if asked for; see the
“warn” option for “.set” in Section 3.10.

4.0 Built-In Variables

Name Val Type

fnlmarg 0 N

fnlspacing

1 L
fnrmarg 71 N
fnspi1 2 L
fnspe 1 L
fnsp3 2 L
footspace

3, L

fspacing 1 L

hour - N

headspace
3 I

hspacing 1 L

indent 0 N

lastcol ~ xN

linecount

lineno ~ %l

Built-In Variables

49

Description

marked as an insert buffer.
Left margin to be used in storing footnotes.

Line spacing to be used in storing footnotes.
Right margin to be used in storing footnotes.

In storing a footnote, the vertical spacing after
the last text line and before the footnote break

In storing a footnote, the vertical spacing after
}?e footnote break and before the first footnote
ne.

In storing {footnotes, the vertical spacing between
footnotes.

Space after the last text or footnote line and be-
fore the footer. It is set by “.footspace”

Vertical spacing left after each footer line. It is
set by ".fspacing”.

Hour of the day - 0, &, ..., 23.

Space after the last header line before the first
text line. The total space is

head sEace + hspacing - 1x0
It is set by eadspace”.

Vertical spacing left after each header line. It is
set by “.hspacing”.

Indentation for the next 1line, in addition to
#lmarg#. This is set by ".indent® and is reset to
zero after starting each line.

The last print position on the line into which
output has been stored. This 1is compared with
#rmarg# to know vhen the line is full. It is set to
#lmarg# + #indent# on each new line.

Number of non-blank lines printed so far on the
page, not including headers. This variable is set
to one immediately after printing headers on each
page and is incremented by one after completing each
text line. This is useful for a subsequent text
reference to a line number on a previous page. The
variable is not used by LO.

Line number on the page. This 1is compared uwith
#maxline# to decide vhen the page is full. When an
upspacing of L 1is to be performed for any reason,
#lineno#+L is first compared with #maxline#. I3 &L
is less the spacing is done, while otherwise the
current page is ejected and a neuw one started.

-

»

50

Name Val Type
lmarg o N

loginname
- S

lspacing 2 L

maxline ~ xl

minute - N
month -
newpagde - S

=

nextpage 1 N

ofooter 0 xN
oheader 0 %N
owWindou 4] N

pageno 4] N

pagetop -+)

paraind 5 N
params -- xN

paraneed 3 iz

paraspacing

3 L
partsperline

2 =N
rmarg 71 N
4'0

Description

Character poslitlion of the left margin. The first
character stored on each line is just to the right
of #lmarg#. It is set by ".lmarg”.

User's name, from Apex. It is preceded by a script
"g” for a guasi name.

Line spacing: The paper 1is upspaced by this amount
after each line, so that #lspacing#-1x0 blank
vertical space appears after each output 1line. It
is set by “.lspacing”.

The maximum value for #lineno# on the current page.
It is set after printing headers on each page,
taking footspace, footers, etc., into account. It
is decremented vhen a footnote is stored. See the
description above for #lineno#.

Minute of the hour - 0, 1, ..., 59.
Month number -1, 2, ..., 12.

Trap action to be obeyed before printing the headers
of the next page. It is set y “.trep”; it is
initialized to the empty string.

Page number to be given to the next page. It is set
by ".nextpage” and by ".pade”, and it is incremented
on each page eject.

The number of odd footer lines currently in force.
The number of odd header lines currently in force.

Spaces to be inserted on the left of each odd page.
It is set by “.set window ...~

Number of the current page. This should be changed
by changing #nextpage#, which see. See Section 2.6.

Trap action to be obeyed at the top of the next
page, after printing headers. It is set by “.trap”;
it is initialized to the empty string.

Indentation for each paragraph, for “.para”.

Number of parameters supplied to the current macro,
or the number of parameters supplied to LO through
5BT when outside of any macro.

Need for each paragraph, for “.para”.
Space for each paragraph, for “.para”.

Number of partial lines per full line of vertical
spacing. This value 1is permanently fixed in the
current implementation.

Ri?ht margin. The last character on the ‘line 1is in
this print position. It is set by “.rmarg”.

Built-In Variables

Name

second -
sfacer -

topspace o©

topuindou
0

totalchars
0

veekday --
windowu 0

year ==

Built-In Variables

N
S

L

51

Val Type Description

Number of seconds after the minute — 0, 1, ..., 59.

Ihe character to be replaced by space. It is set by
.set spacer <char>”; it is initialized to “A~.

Space at the top of each page before the
header. This spaze is included in #bline#.

tirst

Space at the top of each page. This space is not
tgcluded in #blire#. It is set by ~“.set window top

The total number of characters g;inted so far by LO.
This is not used by LO but may by users.

nay Of tm ‘Jeek"’s“"’o. o009y Sat-ﬁc

The number of spaces being inserted on the left of
each line on the current page. It is set before
printing headers on each page to either #eulndow# or
#ouindou#, depending on whether the new value of
#pageno# is even or odd.

Yeal" = 19?4. 1975. seo 0

Preceding page blank 53

Chapter 5: Command Descriptions

This Chapter contains a description of each of LO's commands, in
alphabetic order. Tuo- or three-letter abbreviations are provided for
the more common commands. The follouing conventions are used in these
decscriptions:

N Any expression whose value is an integer.

L Any =xpression whose valuve is a line spacing.
B A buffer-valued variable.

v A variable.

Y-list> A list of variables, separated by commas.

<triple> A three-part string, as described in Section 1.4. The
first non-blank character is taken as the quote character.

<text> Any text at all. The text extends to the end of the line.
<file> An APEX file name.

Other conventions used only once are defined as needed. Recall that a
variable name is a sequence of upper- and lower-case letters, digits,
and the character ~.”, wuith the first character being an upper- or
louer-case letter.

Since the commands are in alphabetic order by the full name of the
command, some of the abbreviations are slightly out of their proper
alphabetical position.

All the commands are tabulated in summary form in Section 8.2,
along with a reference for each to the 3section in which it 1is
discussed.

.bline L

bl L The variable #bline# is set to L, so that the bottom line on
the page is hereafter assumed to be vertical spacirnZ L from
the top of the page. Default is 66=0.- This command is not
meaningful when output is to a buffer. See Section 2.1.

.break
.br This command causes a line break, the current line being
completed and the next text printed starting on a new line.

Command Descriptions 5.0

54

bt <text>

The <text>, uith a carriage-return appended. is sent to SBTF
on the next map.

.buffer B

.bu B This command suitches LO's output to buffer B and sets
#actbuf# to B. If B is missing, output is set to the output
file and #actbuf# is set to the empty string. Buffer B is
not cleared. If this command suitches output away from the
file, it does not force a line break; while otheruise it
does. See Section 2.7 for a discussion of buffers, and
Section 3.6 for their use as macros.

.center <text>

.ce <text>
This command forces a break and then centers <text:. betucen
the left margin (appropriately allouing for any preceding
~.indent” command) and the right margin. See Section 2.4.

.charpos N
If the last character on the output line is one or more
spaces to the left of character position N uith respect to
the current value of #lmarg#, enough spaces are stored so
that the next character stored gZoes into position N.
Otheruise, a neuw line 1is started and the effect of “.indent
N” is simulated. In either case, the next character stored
is into column N. If this command appears before storing
any text on a line (for exasple, iust after ~.break”), it

acts as does ~.indent N°. See Section 2.2.

.clear B

.cl B The contents of buffer B are cleared. If B is missing the
buffer currently active to receive output is cleared. It is
s detected error to attempt to clear a3 buffer from which
input is currently being taken — unless the “.clear”™ command
is on the last line of that buffer, or a ~.end” precedes the
~.clear” command on that line. See Section 2.7.

.comment <text>

.CO ¢text>
This is a comment line and is completely ignored. The ~.x~
convention may equivalerntiy be used.

.console <text>

If <text> is non-empty, the <text> is merely tvped on the
user’s consnle and there is no other action. If <text> |is
eapty, the user is given a prompt<27> after which he is to
type a line folloued by carriage return. (The NO and DELETE
keys. may be used as usual under APEX for line delete and
character erase, respectively.) This line is then processed
as a line of input to LO; it may be either text or commands.
See Section 3.8.

<2?> The prompt is <neuline> ~77 <tab>.

5.0 Command Descriptions

e o i e S vk il s S S i i i

55

.declare <V-list>

.dcl <V-1list>

.de <V-list>
This line declares each variable in the V-list, giving it a
value of type undefined so that it cannot be stored 1into
with “.store”. The abbreviation “dcl” is provided for the
convenience of PL/Il programmers.

.declarebuf «V-list>

.db ¢V-list>
Each of the variables 1in the <«V-list> is declared and
initialized to an empty buffer marked as not being an insert
buffer. See the discussion of declarations in Section t.2.

.declareinteger <«V-list>

.di «V-list>
Each of the variables in the <V-list> 1is declared and
initialized to the integer value zero (or to the default set
by “.set default int~). See the discussion of declarations
in Section 1.2.

.declareline <V-list»
.dl <«V-1list>»
Each of the variables in the «V-list> 1s declared and
initialized to the LIN value 0x0 (or to the default set by
;.s§§ default 1lin”). GSee the discussion of declarations in
ection 1.2.

.declarestring <V-list>
.ds «V-list>
Each of the varliables in the «V-list> 1is declared and
initialized to the empty string (or to the default set by
;'SEE default str”). GSee the discussion of declarations in
ection 1.2.

.efooter N, <triple>
This command sets up the Nth footer line for the even pages.
See Section 2.5. This command is not meaningful when output
is to a buffer.

.eheader N, <triple>»
This command sets ¥g the Nth header line for the even pages.
See Section 2.5. is command is not meaningful when output
is to a buffer.

.end The current input source 1is marked as being at its “end of
file”, whether it 1is the main file, a f{file fetched by
“.include”, or a buffer. On completion of the processing of
the line containing this command (there may be other
commands after it on the line), the current input source is
terminated. GSee Section 3.8 for use 1in “.include” files,
and Section 3.6 for use in macros.

.endofline <text>

.eol <text>
This command is obsolete and has been replaced by ~.trap”,
which should be used.

Command Descriptions 5.0

56

.expand <command>, N, A;, Az, ...
The command <command>, which may be either a built-in LO
command or a8 user-defined macro, is invoked repeatedly, each
time with N (or fewer) arguments, until all the arguments to
T.expand” are used up. See Section 3.11 for detsails.

ag N
N The next N output lines are flagged with an asterisk
(default) in the column specified by #flagcol#, as shoun.

If N is missing it is taken as one. See Section 3.5.

.footer N, <triple>
This command sets up the Nth footer line for both the even
and odd pages. See Section 2.5. This command 1is not
meaningful when output is to a buffer.

.footnote This command is used for setting up footnotes and is
described in detail 1in Section 3.4. This command is not
meaningful when output is to a buffer.

.footspace L
The wvariable #footspace# is set to L. Thereafter, L
vertical spacing 1s left between the last text line and the
first footer line on each page. The default is 3x0. This
command is not meaningful when output is to a buffer.

.fspacing L
The variable #fspacing# is set to L. Thereafter, L-1 extra
vertical spacing 1s left between successive footer lines.
The default value is 1x0. Thls command is not meaningful
when output is to a buffer.

.header N, <triple>
This command sets up the Nth header line for both the even
and odd pages. See Section 2.5. This command 1is not
meaningful when output is to a buffer.

.headspace L
The variable #headspace# is set to L. Thereafter, L
vertical spacing is left betueen the last header line and
the first text line on each page. The default value is 3x0.
This command is not meaningful when output is to a buffer.

help <text»>
This is a programmed HELP call, with the <text> printed as
part of the message. If error output is to a file, so also
is the output from this command - unless the “d~ optlon is
used. The command is of most use to the author of LO in
debudging the program.

hspacing L
The variable #hspacing# is set to L. Thereafter, L-1 extra
vertical spacing is left between successive header lines.
The default value 1is 1%0. This command is not meaningful
vhen output is to a buffer.

if Vy, <rel>, Vo, ctext>
This is a simple conditional command. <rel> may be any of
the strings “eq”, “ne~, “ls~, “le~, "gr” or “ge”; and V; and
V> are expressions. If the values Vi and Vz do not sa%isfy
the given relation, the rest of the line 1is lgnored;

1
1

5.0 Command Descriptions

57

otheruise, <text> 1is processed as a line of input to LO.
The <text> starts with the first non-blank character after
the third comma. See Section 2.9.

.include <file>

dnc <file>
The named file from the user's APEX directory is included in
the 1input in place of this line. To include a file from
another directory, use ~.bt~ to sGET the file into a dot
name, and then “.include” that. The file name must be
followed by a space or the end of the line, so a space is
needed before any "I~ or "|~

.indent N

.ind N The variable #indent# 1s set to N, causing the next line to
be 1indented by N characters from the current left margin.
This command causes a break. If N is negative, the next
line extends to the left of the present left margin, but it
is a detected error if #lmarg# + #indent# is negative.

.insert B

.ins B This command inserts a verbatim copy of the contents of
buffer B into the output (buffer or file). If output is to
the file, pagination continues uhile the lines are added, so
many-printed-page buffers may be assembled. Line spacing is
that which was in effect at the time buffer B was prepared,
as indeed are all other parameters of the layout, This
gommand _causes a break. Compare this command with

.Tescan”.

.label <uord»
This command terminates the effect of the ".skipto™ command,
ghi%? see. If encountered otheruise it is 1ignored. See
ection 2.9.

.leave L

de L Vertical spacing of L is inserted into the text being cre-
ated. If the bottom of the page is encountered while
leaving lines, the rest of the lines are not left. If all
the lines would fall at the top of a page this command

leaves no lines. This command causes a break. If L 1is
missing, the default is one full line.

.lmarg N

.dlm N The variable #lmarg# is set to N, so that the left margin is

just to the right of the Nth position on the line. If N is
missing, it is taken as zero.

.1spacing L

ds L The varlable #lspacing# is set to L, so that upspacing of L
takes place after each output 1line created hereafter. The
default value of #lspacing# is 2x0, for double spacing.

.need L

.ne L If there is room on the page being created for at least L
vertical spacing, this command has no effect. If this test
appears when at the top of a page, the test succeeds no
matter how large L may be. If there is not L vertical space
remaining, a8 new page 1is started. This command 1is not
meaningful when output is to a buffer.

Command Descriptions 5.0

58

JNewvpage <text>
This command 1is obsolete and has been replaced by ‘.traﬁ”.
en

which should be used. This command is not meaningful w
output is to a buffer.
Jnextpage N

The variable #nextpage# 1is set to N, so that the next page
printed will be numbered N and succeeding pages N+1, etc.
#Eageno# is not changed until after footers are printed on
the current page. See Section 2.6. This command is not
meaningful when output is to a buffer.

.ofooter N, <triple»
This command sets up the Nth footer line for the odd pages.
See Section 2.5. This command is not meaningful when output
is to a buffer.

.oheader N, <triple>
This command sets up the Nth header line for the odd pages.
See Section 2.5. This command is not meaningful when output
is to a buffer.

.output B, <«file»
The contents of buffer B is copied into the APEX file named
<file>. Each line is copied exactly as it appears in the
buffer, with a8 new-line character after each line but with
no pagination or headers. See Section 3.8.

.overstrike <quoted wvord> <text>

.0v <quoted word> <text>
The first non-blank character after the space after “over-
strike” (or “ov”) 1is taken as a quote character, and all
characters up to the next occurrence of that character are
taken as the «<«quoted word>. The «<text> (uwhich starts
immediately after the second occurrence of the quote
character) 1is scanned and each overstrikeable character is
preceded by the characters in <quoted word>. The result is
then processed as usual by LO. See Section 3.9.

.page N

.pa N A nen page is started. If N is given, the new page is
numbered N and succeeding pages N+i, etc.; if not, the page
numbering is unaffected. If this command appears at the top
of a pade, it may change the page numbering but does not
result in an extra blank page. Thus ~.page” repeated does
not leave tuo pades.<28> This command causes a break; it is
not meaningful when output is to a buffer.

.pageno N The variable #pageno# is set to N and #nextpage# to N+1, so
that subsequent pages will be numbered consecutively
thereafter. The command “.nextpage” is usually more useful.
See the complete discussion in Section 2.6. This command is
not meaningful when output is to a buffer.

<28> Something must be placed on a blank page; it may be a line with
a few blanks. See footnote 11 on page 16.

5.0 Command Descriptions

59

pagetop <text>
This command is obsolete and has been replaced by ".trap”,
which should be used. This command 1is not meaningful when
output i1s to a buffer.

.para
PG This line is equivalent to the following three lines:
.leave paraspacing - lspacing
.need paraneed
.indent paraind
The three variasbles may be set by " .paraspacing”,
" .paraneed” and “.paraind”, respectively, or by “.store”.
This command causes a break.
.paraind N
.pri N The variable #paraind# is set to N, so that indentation on
the figst line of a paragraph is set to be N positions. GSee
.para”.

.paraneed L
.prn L The variable #paraneed# is set to L, so that L lines will be
" .need”ed before each paragraph. See ".para”.

.paraspacing L

.prs L The variable #paraspacing# is set to L, so that L-lspacing
extra 1lines are left before each paragraph. It is s
detected error to attempt to set #paraspacing# to be less
than #lspacing#. See “.para”.

.plain <text>

pl <text>
The <text> is placed on a line by itself exactly as it
appears, starting at the current indented left margin. This
command causes a8 break. See Section 2.4 for a further
discussion of “.plain”, and Section 3.1 for a discussion of
tabs in such lines.

.proc This command causes reversion to normal formatting following
the use of the “.unproc” command. It is legal only after an
" .unproc” line.

.rescan B <arguments>

.Ts B <arguments»
Buffer B is rescanned as input to LO, uith processing of
control lines as usual. If arguments are supplied, they may
be accessed in B as described in Section 3.6. Compare this
command Wwith “.insert”.

.Teset This command is defined only if it is encountered while
processing a trap action, and resets that action to be still
in effect. 6See Section 3.7.

.rmarg N

.rm N The variable #rmarg# is set to N, setting the right margin
to the Nth position on the line. If this results 1in
0 < flagcol < rmarg, then #flagcol# 1is set to #rmarg#+3.
See Section 1.1.

Command Descriptions 5.0

60

.set <parameters>
This control line permits the user to override certain of
LO0's conventions. Details are provided in Section 3.10.

.skip N N lines of the input are skipped. If N 1is missing it is
taken as one. This command will not cause skipping past the
end of a8 file (see “.include”) or past the end of an input
buffer (see “.rescan”). See Section 2.9.

.skipto <word>
Input text is skipped until a line starting with
.label <word>
is found with a matching <word>. This command will not
cause skipping past the end of the file (see “.include”) or
past the end of an input buffer (see “.rescan”). The <word>
gayt.contain any characters other than space or tab. See
ection 2.9.

.store V,<text>

ot V,<ctext>
Variable V 1is updated, the nature of the updating beling
dependent on V's previous value. If the previous value of V
uas type INTeder, <text> is evaluated as an integer and the
result is stored into V; if it was type LINe, <text> is
evaluated as a line; and if of type STRing, the remainder of
the line is stored into V. Note that in storing into a
STRing the remainder of the line is not scanned for “Il~ or
7. It is a detected error if V 1is wundeclared, if V is
declared but has no value, or if V is a buffer-valued
variable. Note that a variable declared by ~.declare-
integer”, " .declareline” or ~.declarestring” may be
“.stored”ed into immediately. Built-in variables may be
changed with the expected effect. See Section 1.2.

.storeinteger V, N

.51 V, N The value of variable V is set to the integer N, regardless
of its previous type. It 1is a8 detected error to attempt to
change the type of a built-in variable.

.storeline V, L

.sl V, L The variable V is given the line-valued value L, regardless
of its Erevious type. It is a detected error to attempt to
change the type of a built-in variable.

.storeroman V, N

.sr V, N The integer N is converted to roman numeral f{form using
lower-case letters and stored (as by “.storestring”) into
the variable V. V may then be used as may any string-valued
variable. N must be positive and less than 4000.

.storeromanupper V, N
.stu V, N The effect 1is as for “.storeroman™, but upper-case letters
are used for the roman numerals.

.storestring V,<text>

.ss V,<text>
The value of variable V is set to the string <text>. It is
a dgtgited error to attempt to change the type of a built-in
variable.

5.0 Command Descriptions

61

.subst <text>

.su <text»
This command causes the substitution algorithm described in
Section 2.3 to be applied to the <¢text>, and the result then

to be used as input to LO. This command does not itself
%guied a break, but the resulting line could be a command
a oes.

.tabsin <tablist»
The <tablist»> must be a list of positive integers, separated
by commas, in ascending order. abs appearing in the input
in “.plain” lines, when fill mode 1is off, and under the
control of “.unproc”, are replaced by spaces as if the tabs
gn %be input device were as given in the <tab list»>. See
ection 3.1.

.tabsout <tablist »
This command is not vet implemented. See Section 3.1.

.trap <event> <text>

The trap <event> is set, where <event> must be one of
“endofline” (or “eol”), “nextpage~ <(or “np~), or “pagetop”
(or “pt~). When the specified event takes place, the text
<text> is interpreted as a 1line of input to LO. The
“endofline” event occurs on completion of processing the
current output line, before paper upspacing and possible
page ejection. The “nextpage” event takes place after page
ejection but before printing headers at the top of the next
page. (No text should be emitted in the action for this
event.) The “pagetop” event takes place after printing
headers and before printing any text on the new page.
Setting a “newpage” or “pagetop” trap is not meaningful when
output is to a buffer. GSee the complete discussion of traps
in Section 3.7. If ¢event> is “do”, than <text> should name
a8 trap. The action stored for that trap is then performed
as if the event had occurred. It 1is permissible to “.trap
do” an event for which no action is currently stored.

Ariple <triple>

dr <triple»
The <triple> is a three-part string. Substitution is first
performed in the triple (as described 1in Section 2.3) and
then the first part 1is printed left justified, the second
part centered betueen the margins, and the third part right
justified. The first non-blank character after “triple” (or
“tr~) is taken as the quote character. This command causes
a break. See Section 2.4.

.undeclare <V-list>

.und <V-list»
This command causes each variable on the <«V-listy to be
undeclared. If it had been declared before the matching
“.declare”, then that declaration is restored. (See the
discussion of declarations in Section 1.2.) It is &
detected error to attempt to undeclare an undeclared
variable. It is a3lso a detected error to undeclare the name
of a buffer while outputting to it, or inputting from it -
but see the discussion under “.clear” and in Section 3.6 for

Command Descriptions 5.0

62

.unproc
unp

an exception. Undeclaring a built-in variable is permissi-
ble, and a warning message (see Section 1.5) “will be given
for this if desired.

All text following this command, and before the next ~.proc”
command (including all command lines other than “.proc”™) is
inserted in the text being created exactly as it appears in
the input textfile, with the follouwing considerations: The
spacing betueen output lines and the left mardin are those
used in the layout at that point. If output is to the file,
page breaks with footers and headers continue to be
inserted. This command causes a break. The effect of
“.unproc” is terminated by the end of an input file (see
“.include”) or the end of an input buffer (see “.rescan”).
See also ~.tabsin™, for special processing of tabs in the
gon%folled text. Also, compare with fill mode, discussed in
ection 1.1.

Command Descriptions

63

Chapter 6: Examples

This chapter contains some examples of LO text, mostly having to
do with macros. Most of the examples are taken from the source text
for this document, since the reader has in front of him the results of
the operation of these macros. The numbers printed to the left of the
macro are not part of the LO text; instead they are printed to
facilitate reference to individual lines in the discussion that
follows. Some of the examples from this document are simplified
slightly for the sake of expositional efficiency. Abbreviations are
used in a few places when a line uould otheruise be too long for the
page; each such use is commented on.

6.1 — Date and Time: In the first example, the problem 1is to start
with the LO variables #hour# and #minute#¢29> and store into variable
#time# a string like this:

hour minute time

0 5 *12:05 AM'
3 10 ' 3:10 AM’
12 20 '12:20 PM°*
19 3 ' 7:03 PM°
23 55 '11:55 PM’

There are several problems to be solved. If the value of #minute# is
less than 10, an extra "0~ must be stored after the colon; similarly,
if the final time is between one and nine, an extra leading space is
needed. Note also that 15 minutes past midnight 1is referred to as
12:15 AM. Now note the follouwing LO text:

.declarestring time

.store time,AM

.if hour, gr, 12, .store hour, hour - 120l .store time,PM
.if hour, eq, 12, .store time,PM

.if hour, eq, 0, .store hour, 12

.subst .store time,#minute# #time#

.if minute, ls, 10, .subst .store time,o0#time#

.subst .store time,#hour# :#time#

.if hour, ls, 10, .subst .store time, #time#

NDODNCOO S WN -

29> Recall that these integer-valued variables give the time when LO
starts its work.

Examples Date and Time 6.0 - 6.1

64

This sequence stores the proper value¢30>, In line 1 #time# 1is
declared, and it is initialized to the string value “AM” in line 2.
No more than one of the three tests in lines 3, 4 and 5 will succeed;
sometimes none of them will. The reader should satisfy himself that
they do the right processing. In line 6 the minute is stored and the
space before “AM” or PM~. In line ? a zero is stored if the minute
is only one column wide. Lines 8 and 9 store the hour, with a leading

blank if the hour is less than ten. In general, spaces are used in
this example (as well as in the remaining ones) to improve
readability. For example, there is usually a space after each comma.

Houever, it is important that the last comma on lines 2, 3 and 4 not
be followed by a space. In these lines the store 1is into the
string-valued variable “time~, so all characters after the comma are
used in determining the value to be stored. The space after the last
comma in line 9 is important, since the reason for that line is to
store a leading space into the value of “time”.

Further examples of time conversion are found in the file dt-lo in
directory ART. One example from that file is of interest. The last
task in that file 1is to store into the STRing-valued variable #wday#
the day of the week. Recall that the built-in INTeger variable

#uweekday# is o0 for Sunday, 1 for Monday, ... The following code is
used:

1 .declarestring wday

2 .skip weekday

3 .end Il .store wday,Sunday

4 .end Il .store wday,Monday

5 .end Il ,store wday,Tuesday
6 .end Il .store wday,HWednesday
? .end I .store wday,Thursday
8 .end Il .store wday,Friday

4 .end Il .store wday,Saturday

The ".skip” command causes between 0 and 6 lines to be skipped. Each
follouing line starts with “.end” to terminate processing of the file
on completion of processing that line, followed by a “.store” of the
desired wvalue. The “.end” must come first, since the wvalue to be
stored into #uday# extends to the end of the line.

<30> A programmer might claim that it 1is bad code because it
sometimes alters its input arguments. This fact, while true, does not
detract from its value as an example of LD usage.

6.1 Date and Time Examples

65

6.2 — Miscellaneous Examples: The next example is the macro used in
this document to store one or more lines of indented text. The macro
stored in buffer “pix~ takes an arbitrary number of parameters, up to
8 maximum of nine. Each parameter is printed on a separate line,
exactly as it is typed. For example, the line

PIx 1 ‘nou is the time® <last line<
would produce the display

1
nou is the time
last line

(Note the use of "¢~ as the quote character for the third parameter.)
Similarly, the line

.pix /first line/ /second line/ /.../ /last line/
would produce

first line
second line

last line
The LO text used to define the macro “pix~ now follous.
1 .declarebuf pixll .buffer pix
2 ..lspacing lspacing - 0Ox1
3 ..leave 0Ox1
4 . .need params x lspacing
5 ..lmarg lmarg + 10
6 ..subst .plain #1#
? ..1{f params, ge, 2, .subst .plain #2#
B if params, ge, 3, .subst .plain #3#
9 if params, ge, 4, .subst .plain #4#
10 ..1f params, ge, 5, .subst .plain #5#
11 ..if params, ge, 6, .subst .plain #o&#
12 ..1f params, ge, 7, .subst .plain #7#
13 ..1f params, ge, 8, .subst .plain #8#
14 ..1f params, ge, 9, .subst .plain #9#
15 ..if params, gr, 9, .subst .help params = #params#, > 9
16 ..lmarg lmarg - 100l .lspacing lspacing + Ox1
17 ..leave ox1
18 .bu

Line 1 declares “pix~ as a buffer, and then switches LO's output to
that buffer. Lines 2 through 17 start with “..”, so each line is
copied into the cutput with the first ~.” removed. In other words,
buffer “pix”~ contains just the text shown in those lines, but with one
leading ".~ removed from each line. Finally, line 18 switches LO's
output back to the file. Note that #lspacing# is decreased by ox1 in
line 2 and incremented by that amount in line 16, so the final value
is the same as the initial value but the lines stored are closer

Examples Miscellaneous Examples 6.2

66

together. Similarly, #lmarg# 1is changed in lines 5 and 16 so as to
leave it wunchanged but store the lines with a different value. The
macro fails to work with more than 9 parameters, and the “.help”™ in
line 15 is its way of complaining.

Another example is the macro used to produce the command
descriptions in Chapter 5. The macro requires one, tuwo, three or four
parameters. The first is the command name; the second is the argument
prototype; the third is the command abbreviation; and the fourth is an
alternate abbreviation. Only one argument need be supplied 1if the
command takes no argument and has no abbreviation; but, 1if it has an
abbreviation but takes no argument, the second argument to ".foo” must
explicitly be the empty string. The macro is defined using the text

1 buffer fooll .clear
2 ..leave ox1ll .need (params + 2) x lspacing
3 ..indent -100l .subst .#1#
4 ..if params, ge, 2,.subst #2#
5 ..if params, ge, 3,.indent -10ll .subst .#3# #2#
6 ..if params, de, 4,.indent -10ll .subst .#4# #2#
7 ..if params, gr, 4,.help params > 4
B ..charpos 0
o buffer
10 .lmarg 10

This stores into buffer “foo” (uwhich was previously declared) lines 2
through 8, with a =.” deleted from each line. Line 10 sets #lmarg# to
10 after storing the buffer. When the buffer is expanded, line 3
causes the text of the first parameter to be stored into column 1.
Note the “.need” in line 2 for two more lines than the number of
parameters. Note also that there are two spaces after “.subst” in
lines 3, 5 and 6. This keeps the result of the substitution from
being interpreted by LO as a command, which would be disastrous since
it is intended as text to be stored. Use of this macro is as follous.
Compare with the text actually produced in Chapter 5.

.foo bline L bl

The variable #bline# is...
.foo break // br

This command...

.foo bt /<text>/

The <text>, with...

.foo declare /<V-1list>/ dcl de
This line declares...

NDODNGOUTD2WNE-

10 L N I
11 .foo end
12 The current input source...

6.2 Miscellaneous Examples Examples

67

Note that the second argument in line 3 is the empty string, and in
line 8 the second argument is a string delimited by °/” as a quote
character.

The next problem is somewhat Iinteresting, and the reader 1is
advised to try to solve it himself before looking at the solution
presented here. In its present form it appears rather artificial, but
the technique is one I have made use of in practice. It is desired to
define a macro “foo”, so that the effect of the command

Z-1 .foo flum
is that the wvariable #flum#, assumed to be of type STRing, has the
current page number asppended to it. That is, the above command should
result in LO's obeying the command

Z-2 .subst .store flum,#flum#-#pageno#

If the previous value of #flum# were the string “2-5" and this was
executed on page 11, the new value of #flum# would be ~2-5-117.
Something like this is done in preparing the index, although a special
case 1is made in storing the first entry. This problem is harder than
it looks at first glance, and the reader should now try to solve it.

It is clear that the line to be obeyed eventually is Z-2, but the
problem is what came just before this. That is, a line such as

Z-3 .subst .subst .store #1# ,XXXX
must have been obeyed, but what can XXXX be so that after performing
substitution on it the result 1is “#flum#-#pageno#”? The obvious
possibility of “##1##-##pageno##” 1is clearly incorrect, since the
effect of the substitution algorithm on “##” is to leave “#~. It |is
possible to solve this problem somewhat painfully by changing the
variable delimiter, but the following seems to be more elegant. It
uses a varlable named #splat# whose value is “#7¢(31>, UWe have

Z-4 .declarestring splatll .store splat,#
With this variable available, it is clear that the XXXX in Z-3 can be

#splat##i##splat #-#H#pageno##

since applying the substitution algorithm to this ylelds the desired
value. Thus, the macro “foo” contains the single line

Z-5 .subst .subst .store #1#,#splat##i1##splat#-#pageno#

gaii tln the TX-2 community, the mark “#° is usually pronounced
splat”.

Examples Miscellaneous Examples 6.2

68

With only one “#~ on each end of “pageno”, it gets substituted for on

the first ".subst” rather than the second, but the final result is the
same .

6.3 - L(Chapter and Section: The next series of examples concerns
chapter and section processing in this document. This interacts with
page headers and footers, as well as with the Table of Contents. The
variables needed are declared by the commands

D-1 .declarestring title | chapter name

D-2 .declarestring sbt | section name

-3 .declarestring &5 | starting section

-4 .declarestring SE | ending section

D-5 .declareinteger ch | chapter number

D-6 .declareinteger se | sectlion number

D-7 .declarestring csi1 | for Table of Contents

D-8 .declarestring cs2 | ditto

D-9 .declarestring dots | ditto

D-10 .store dots,## . N B

D-11 .store cs2,A

Note the use of the vertical bar “|~ to introduce comments. To see
the use of the first four variables, note that the footer line is
produced by the command

.footer 1, '#title# ' #sbt# #SSHASEH'
As uill be seen, before printing the header on each page, #5S# is set
to the current section number and #SE# is set to the empty string.
#SE# i1s changed when each section is started. '

We now look at the macros that process chapter and section
beginnings. The present chapter starts with the line
.chapter 6, ‘Examples’
Follouing is the piece of text that defines the macro ".chapter”.

C-1 buffer chapter | chap.number, title
C-2 ..subst .store ch, #1# | chapter number
C-3 ..store se, 0 | section number

C-4 ..subst .store title,#2#

C-5 ..store sbt,

C-6 ..subst .store SE, - #ch#.0

C-7 . .page

C-8 . .plain

C-9 ..leave 1x1

C-10 ..subst .center Chapter #i1#: #2#

C-11 ..leave 2%0

C-12 ..para

C-13 ..if pageno, ge, 10, .store cs2,

C-14 ..buffer contents

C-15 ..leave 1x0

C-16 ...need 4x0

6.2 - 6.3 Chapter and Section Examples

69

C-17 ..subst ..triple 'Ch #ch#: #title# '#dots#’#csa##pagenc#’

C-18 ...leave oOx1

C-19 ..buffer

C-20 ..store csi,hhh

C-21 .buffer
Since a8 new page is started in line C-7, the ~.plain” on line C-8 is
needed so that the “.leave” in line (-9 will actually leave some
space. (Recall that a ".leave” given at the top of a page leaves no
space, as described in Section 2.2.) The actual chapter title 1is

stored in line C-10.

Each section is started by calling “.section”® with the section

number and section title as parameters. This macro is defined by the
text

S-1 buffer section | sect.number, title
S-2 ..leave 10l .need 3x0

5-3 . .subst .store se, #1# | section number
S-4 ..subst .store sbt,#2#

5-5 ..subst .stare SE, - #ch#.#se#

S-6 ..subst .overstrike '’ #ch#.#se#h-H#sbt#:
5-7 ..if se, eq, 10, .store csi, hh

5-8 ..i1f pageno, ge, 10, .store cs2,

5-9 ..buffer contents

S5-10 ..su ..tr ° #ch# . #Hse# i#csif#fsbt# "#dots# ' #cs2##pagenc#’
S-11 ..buffer

S-12 .buffer

Line S-6 stores the section title into the text, underlined. Next we
have

N-1 buf fer newpagework | This is invoked on each neupage.
N-2 ..subst .stare SS,#ch#.#se#

N-3 ..store SE,

N-4 buffer

N-5 .trap neuwpage .newpagework I .reset

Lines N-2 and N-3 go into buffer #neupageviork#, and line N-5 sets a
newpage trap that invokes this buffer and resets the trap. This
provides for the initialization of #SS# and #SE# mentioned earlier.

#SE# is updated also in line S-S.

The Table of Contents is the last item printed when the LO
document is created. It is achieved by storing information 1into
buffer #contents# at the beginning of each chapter and each section.
This buffer is then rescanned at the end, after the page numbering and
headers and footers are set as appropriate. The lines of interest are
C-13 to C-20 and 5-7 to 5-11. The line stored for a new chapter is in
C-17 and for a new section in S-10. (Note abbreviations for “.subst”

Examples Chapter and Section 6.3

70

and ~.triple” 1in line S-10.) Each line 1is a ~.t¢iple” command, with
the chapter or section number and name in the left part, the page
number in the right part, and the variable #dots# in the center.
Substitution is performed as the line is stored into the buffer so
that #pageno# will be replaced by the value it has when the line is
stored. The value of #csi# 1is set to "AAA” 1in [C-20 at the beginning
of each chapter; it is changed to “AA~ in S-7 as soon as the section
number reaches 10. It serves to keep the section name lined up
vertically when the section number goes to two digits. Variable #cs2#
serves 38 similar function for the page number. It is initialized to
“A” in line D-11 and 1s cleared to the empty string in either C-13 or
5-8, wuhichever is first executed after the page number reaches 10.
The value of #dots#, set 1in D-10, is two “#"s followed by many dots.
The variable is replaced by its value when the substitution is done in
C-17 or 65-10 as the ~.triple” line is stored into buffer #contents#,
and “##~ becomes “#~ when substitution is done for the “.triple”, so
there is one “#~ when the triple is expanded during the printing of
the Table of Contents. As explained in Section 2.4, a “#~ at the left
end of the center string of a triple causes characters to be discarded
from that end of that string in the event that the triple is too wuide
to fit on the line. The value of #dots# has been chosen to be wide
enough so that this is the case for all “.triple” lines in the buffer.
The effect is the array of dots seen in the Table of Contents as it is
printed.

6.4 - Recursive Macros: It is a maxim that no manual for s
programming language that permits recursion is complete until a
factorial example is included. LO is enough of a programming language
that I would not dare to disobey this maxim. We define a macro “fact”
so that

.fact N, 6
causes the factorial of six to be stored into variable N, presumably
previously defined. An extra buffer “facti” 1is used, as well as

INTeger variables “fi1~ and “f2°. The following text should appear in
the input:

F-1 .declarebuf fact, facti

F-2 .declareinteger f1, f2

F-3 .buffer fact
F-4 ..store f1, 1

6.3 - 6.4 Recursive Macros Examples

71

F-5 . .5ubst .facti #2#

F-6 ..subst .store #1# ,#{1#
F-7 .buffer facti

F-8 ..subst .store f2, #1#
F-9 o2t 124 18, 2, ond
F-10 ..store f1, f1 x f2
F-11 ..fact1 - f2-1

F-12 .buffer

Suppose the call for #fact# is as above. Buffer #fact# initializes
#f1# to one and then calls #fact2# with six as parameter. #facta#
stores its parameter into #f2#. If the parameter is less than two it
is done, while otheruwise it replaces #fi1# by “f1 x f2° and then calls
itself recursively with an argument one smaller. The arrow on line
F-11 causes "5~ to be passed instead of ~“6-1". It is not really
needed, since the “.store” in line F-8 would get the right value
anyway.

Strictly speaking, variable #f2# 1s not needed, since lines F-92,
F-10 and F-11 could be started with “.subst” and ~“f2° replaced by
“#1#°., But this would put the recursive call on a line with “.subst”,
which (as suggested in Section 3.6) results in inefficient use of
storage for recursion.

As another example of recursion, consider a test program f{or
#fact# as just defined. Suppose that 1lines F-1 to F-12 are followed
by the following lines:

F-13 .declarebuf fooll .buffer foo

F-14 ..subst .store m, #1#
F-15 ..fact n, -m

F-16 ..subst .console #m# #n#
F-17 ..foo » m + 1

F-18 .buffer

F-19

F-20 .declareinteger m, n

F-21 .foo o

When LO reads this file, it will print successive lines with n and n!
on each. After 13! is printed, a partlial result becomes too large and
an error message is glven.

Examples Recursive Macros 6.4

73

Chapter 7: LO on TX-2

This chapter discusses LO as it is implemented on TX-2. A feu
comments are given on what would be involved in moving it to another
computer.

2.1 — Houw to Use LO: To use LO, log 1in to the APEX Time-Sharing
System on TX-2 and prepare (using any convenient text editor) a text
file — say, called “inputfile~. Then type to BT the line

5do art lo inputfile -outputfile- -args- -options-
The effect of this command is to read “inputfile” and process it,
producing an output file. Only the first argument is required: If
the second argument is not given, output is into the text file “:lo”
If the output exceeds one book, 8 text group will be made. (Such text
groups can be LDXed directly by sldx.)

If any errors are detected during LO's operation, LO reports this
fact to the operating system by peeling to the BT with negative
epsilon. This is the same condition used in determining whether or
not to LDX the output (if requested).

Extra arguments and options may be specified, referred to above as
Targs”™ and “options”. The arguments are supplied to the run as
parameters, available through the macro parameter mechanism described
in Section 3.6. The options set switches in LO, and are as follous:

b BCPL comment convention. Any line in any input file
starting with ~//~ in the first tuwo columns has those two
characters removed, and the line is then processed as usual.
This provides a mechanism for using LO to format long
comments in BCPL programs.

c Check wuidth for the LDX. An error message is given 1if any
output line is too wide for the LDX. The check takes proper
account of underlines. This option is independent of the
"1l” option.

d Set debug mode. This 1is intended for debu%ging LO and 1is
not of interest to the average user. It aftects the “.help”
command and the printing of error messages; it may alsoc have
other effects and so is best avolded unless you know uhat
you are doing. In particular, it may invoke an experimental
feature that I am in the process of debugging.

LO on TX-2 How to Use LO 7.0 - 7.1

74

e Error output to a file. This causes all error messages from
LO to be stored into a file rather than being printed on the
user's console. If any errors are detected, the user s
informed of that fact and given the name of that file at the
end of the run.

1 LDX the output. The output file (which 1is nonetheless
created) is printed on TX-2's on-line LDX printer, using the
default character set in 6ldx. This LDXing is suppressed if
any errors are detected.

n No help calls. This suppresses the SHELP call that 1is
normally part of each error message. It is 1implied by

- _ .

option ~e”.
p Prompt. This causes LO to print each page number on the
console as it completes outputting that text page. For lon
files it provides the user with reassurance that LO is stil
there and that APEX has not crashed. This appears on the
console even if error output has been directed to a file.
I1f any “args” are to be given, the output file must be specified.<¢32>
The “args” and “options” are separated by an argument of ~/7. For
example, to process input file “foo” into the default output file with
macro arguments “a” and “quert”, and with prompt mode and error output
to the file “+lo-err-foo”, type

5do art lo foo - aguert /7 p e
If any of “args” is to contain characters other than those that are
permitted in an APEX file name, it may be enclosed in APEX's BEGIN
WORD-EXAM quotes, so that

5do art lo foo - BEGIN a b ¢ WORD-EXAM
will supply "8 b c” as the third macro argument.

Any special character (as the term 1is defined by SBT) may be used

where “-" or /" is mentioned above.
7.2 — On-Line Documentation: It is possible for one in the TX-2 room
to obtain LO's documentation on line from APEX. (Obtaining the

documentation via the ARPAnet is not practical, since it depends on a
particular LDX character set. Further, a tape mounting is required.)
It is not recommended, however, since the computing takes well over
five minutes on full machine and not quite forever under time sharing.
Also, LDXing takes about nine minutes. (The output is well over four

<32> If the second argument is “-~, the default ~-lo” is used for
-output.

7.1 - 7.2 On-Line Documentation LO on TX-2

75

books long.) Nonetheless, it can be done, like this. Login to any
free name, and type

5det art lo-lo
55 lo-lo

This puts on the scope instructions for tape mounting to read the
relevant files. Follow these instructions, and then type

5do art lo lo-tnh - - p
This LOs the document with prompt mode, which is reassuring. Then
type

5§et art ch2-file
5ldx -lo chz2-file

WAIT UNTIL THE LDXING IS COMPLETE, and then (and only then) type

5quit
The output of LO is a text droup; typing Squit too soon may cause some
of its books to be dropped. (Only the one actually being LDXed and
the next one are frozen into core.) The last few pages include the
Abstract and Table of Contents; reorder as needed.

7.3 - LO on Another Computer: Since LO is written entirely in BCPL,
it should not be too difficult to move it to another computer. (I
assume, of course, that there already is a8 BCPL.) That part of LO
that accepts parameters from the console would, of course, have to be
reuritten, but this is all in one place. Also, such commands as ~.bt”
and “~.console” would have to be rethought, and “.include” and
“.output” might require a different syntax for file names.

Another problem is the use of certain TX-2 characters that are not
likely to exist elswehere. For an ASCII character set, I suggest
using ";” for “H~, "% for “x*, and "%" for "x". Ampersand-digit
could be used for the Greek letters «, B, & and A.

L0 uses two packages written in TX-2 machine code (TAP): a

hash-code lookup package used to store variable names, and a
free-space package. Also used is a random number generator.

Undoubtedly other issues would appear as soon as a transfer
project started. I will be glad to cooperate and to supply the BCPL
source code, as well as the text flles that make up this document.

LO on TX-2 LO on Another Computer 7.2 - 7.3

e

L

77

Chapter 8: Summary Tables

This chapter contains tables that summarize all of LO's predefined
varlables and commands, as well as the options to ~.set”.

8.1 — Table of Variables: The table 1in this section summarizes all
the variables predefined in LO. A more complete description of each
of the variables is found in Chapter 4. The column headings are:

Name The name of the variable.

Val The default value. For strings, the value is shown within
‘quotes’. See Chapter 4 or the reference for values
marked ~--", which cannot be described here 1in the
avallable space.

RO Read only. A "x" in this column indicates that the
variable cannot be changed with “.store”.

Type Letters N, L, S and B refer to INTeger, LINe, STRing and
BUFfer, respectively.

Ref Reference. This is the section number in which the
variable 1is discussed. If none 1is given, the only

discussion is in Chapter 4.

Name Val RO Type Ref Description

actbuf v x § 2.7 Dbuffer currently recelving output
bline 66%0 L 2.1 page length

day - N 1.2 day of the month

efooter 0 x N 2.8 number of even footers
eheader 0 x N 2.5 number of even headers
endofline e S 3.7 trap action before next line
eviindow 0 N 2.1 window on even pages

flagcol 74 N 3.5 column for flags

flagdder Tk’ x S 3.5 flag

flagsu 1] N 3.5 number of lines yet to be flagged
fnbreak -— o) 3.4 break before footnotes

fnbuf - x B 3.4 buffer to hold footnotes
fnlmarg 0 N 3.4 left margin for footnotes
fnlspacing 1%0 L 3.4 spacing for footnotes
fnrmarg 71 N 3.4 right margin for footnotes
fnspi1 2%0 L 3.4 space before footnote break
fnsp2 1%0 L 3.4 space after footnote break
fnsp3 2%0 L 3.4 space betueen footnotes
footspace 3%0 [2.1 space before footer

fspacing 1%0 L 2.1 space between footers

Summary Tables Table of Variables 8.0 - B.1

78

Name

hour
headspace
hspacing
indent

lastcol
linecount
lineno
lmarg

loginname
lspacing
maxline
minute

month
neupage
nextpage
ofooter

oheader
owindow
pageno

pagetop
paraind

params
paraneed

paraspacing
partsperline

rmarg
second
spacer

topspace
topuindow

totalchars

vieekday

indow
year

8.2 — Table of Commands:

Val RO Type Ref Description

-- N 1.2 hour of the day
3%0 L 2.1 space after header
1%0 2 space between headers
0 N 2.2 indent for next line
-- x N last used column
-- N count printed lines on the page
0x0 «x L current vertical position
0 N 2.1 left margin
-- S 1.2 user's login name
2x0 x L 2.2 space after each line
-- x £ max value for lineno
-- N 1.2 minute of the hour
- N 1.2 month of the year
e S 3.7 trap before next page
1 N 2.6 number of next page
0 x N 2.5 number of odd footers
0 x N 2.5 number of odd headers
0 N 2.1 window on odd pages
0 N 2.6 number of current page
v S 3.7 trap after next page header
5 N 2.2 indent for .para
-- x N 3.6 number of parameters
3x0 L 2.2 need for .para
3%0 L 2.2 spacing for .para
2 x N 1.2 part lines per uhole line
71 N 2.1 right margin
-- N 1.2 second of the minute
A x S 1.1 non-separating space
0%0 L 2.1 space at the top of each page
0x0 L 2.1 window at top of each page
(o] N total characters output so far
-- N 1.2 day of the ueek
o N 2.1 Window on current page
-- N 152 year

The table in this section summarizes all of

LO0's commands.

The column headings are:

Command Command name.

Abv
Brk

8.1 - B.2

Abbreviation for the command, if one exists.

The entry is “yes” or "no” as the command does or does not
cause a break. An entry of “-" means that it sometimes
does - see the reference. An entry of “?” means that the

command itself does not, but an effect may include a
break. (For example, “.subst” does not itself cause a
break, but the result of the substitution may be a break-

causing command.)

Table of Commands Summary Tables

79

Buf The entry is “yes” or ~“no” as the command is or is QOE

meaningful when output is to a buffer. An entry of -
means that it sometimes is - see the reference.

Ref Reference. This 1is the section number in which the
command 1is discussed. If no reference is given, the
command is discussed only in Chapter 5.

Args The argument types are listed. A value in “({...)"
indicates the default value used if the argument 1is
missing. An entry of ~--" means the argument 1is too
complex to summarize in the available space - see the
reference.

Command Abv Brk Buf Ref Args Description

.bline bl no no 2.1 L set ﬁage length
.break .br yes vyes 2.2 break output text
bt no yes 3.8 <text> send <text> to sBTF
.buffer bu - yes 2.7 B output to buffer B
.center .Cce yes yes 2.4 <text> <text> is centered
.charpos no yes 2.2 N “tab” to position N
.clear .cl no vyes 2.7 B {actbuf) clear buffer B
.comment .CO no ves <text> comment - ignored
.console ? yes 3.8 <text> 1/0 to console
.declare .de no vyes <V-list> declare variables
.declarebuf .db no vyes 2.8 <V-list»> declare buffers
.declareinteger .di no vyes 2.8 <«V-list» declare integers
.declareline .dl no vyes 2.8 <«V-list> declare LINes
.declarestring .ds no ves 2.8 «V-list» declare strings
.efooter no no 2.5 N, <triple> store even footer
.eheader no no 2.5 N, <triple» store even header
.end no vyes 3.6 end an input source
.expand ? yes 3.11 --

.flag .fl no ves 3.5 N {1} flag next N lines
.footer no no 2.5 N, <triple» store a footer
.footnote no no 3.4 -- store a footnote
.footspace no no 2.1 L set #footspace#
.fspacing no no 2R L set #fspacing#
.header no no 2.5 N, <triple> store a header
.headspace no no 2.1 L set #headspace#
help no vyes <text> call sHELP
.hspacing no no 2.1 L set #hspacing#

ol ? yes 2.9 -- conditional command
.include .inc no vyes 3.8 <«file» include a text file
.indent .ind yes yes 2.2 N indent next by N
.insert .ins ves yes 2.7 B insert buffer B
.label no vyes 2.9 <word> terminate .skipto
.leave .le yes vyes 2.2 L {1x0} leave spacing L .
Amarg Am no yes 2.1 N {0) set the left margin
.lspacing ds no yes 2.2 L set spacing

.need .Nfe no no 2.2 L require L spacing

Summary Tables Table of Commands 8.2

80

Command Abv Brk Buf PRef Args Description
.nextpage no no 2.6 N number next page
.ofooter no no 2.5 N, <triple»> store odd footer
.oheader no no 2.5 N, <triple> store odd header
.output no vyes 3.8 B, «file» output buffer B
.overstrike .0V nNo yes 3.9 i ctexty overstrike

pade .pa vyes no 2.6 N {nextpage) eject the page
.pageno no no 2.6 N set #pageno#

.para .pr yes vyes 2.2 start new paragraph
.paraind .pri no vyes 2.2 N indent for .para
.paraneed .prnno yes 2.2 L need for .para
.paraspacing .prs no vyes 2.2 L spacing for .para_
.plain .pl yes vyes 2.4 <text> store text verbatim
.proc yes vyes 2.4 end .unproc

.rescan .'s no vyes 3.6 B rescan a buffer
.reset no yes 3.7 reset a trap
.Tmarg .M nNo yes 2.1 N set right margin
.set - yes 3.10 -- set switches

.skip no vyes 2.9 N {1} skip N input lines
.5kipto no ves 2.9 <«ord»> skip lines

.store .st no vyes 2.8 V,ctext> store into V
.storeinteger .51 no ves V, N store N into V
.storeline .5l no vyes VvV, L store L into V
.storeroman .S No vyes V, N roman numeral
.storeromanupper .sru no ves V, N ROMAN numeral
.storestring .55 No yes V,<text» store <text> into V
.subst .s5u 7 yes 2.3 <text> substitute

.tabsin no vyes 3.1 N, N, ... set input tabs
.tabsaut no vyes 3.1 N, N, ... set output tabs
.trap no - 3.7 <ev> <text> set a trap

triple tr yes yes 2.4 <triple> store a triple
.undeclare .und Nno yes 2.8 <V-list> undeclare variables
.unproc .unp yes vyes 2.4 store text verbatim

8.3 — Options for “.set”: The following table summarizes the options
for ".set”. This command is discussed in detail in Section 3.10, and
most of the options are discussed in that part of this document in
tihich they are relevant. Many of the options use an internal suwitch
SW. This 1is initially ON when starting to scan a “.set” line; it is

controlled by the options “on” and “off~. The column headings in the
table are:

Option The option.
Abv The abbreviation, if one exists.
Params Parameters. If none is shoun, none is expected. The

8.2 - 8.3 Options for ~.set” Summary Tables

81

notation " means that the parameter is repeatable.
For the meaning of abbreviations see the reference.

SW The entry is “yes” or “no” as the option is or is not
dependent on the setting of the suwitch SUW. If 1t is
“yes”, then “on” or “off” may may precede the option.
Ref This 1s the section in which the option is discussed.
Sets This is the LO feature set by this option. A value in
{...} 1s the default value.
Option Abv Params SH Ref Sets
adjust yes 1.1 right—adiust {ON}
default <type><val»... no 2.8 declaration default
ender <cgar> P yes 3.2 sentence end chars
fill yes 1.t fill mode (ON}
flagger <uword> no 3.5 flagger {x«}
hyphenator hy <char> no 3.3 hyphenator {}
insert yes 2.7 buf insert sw {(OFF)}
of f - 3.10 turn SW off
on - 3.10 turn SKH on
overstrike ov <char yes 3.9 overstrikeable chars
rpar <EhET> s yes 3.2 sentence end - paren
spacer <char»> no st spacer {A}
starter <char> ... yes 3.2 sentence start chars
variabledelimiter vd <char> no 2.3 var delimiter (#)
Harn <option> ... yes 1.5 warning suitches
wide yes 3.2 sentence end {0OFF)}
window <opt> V, ... no 2.1 windous {0}
Summary Tables Options for “.set” 8.3

83

Index

Following is an index of various terms used in this document. All
variables are described in Chapter 4, and all commands in Chapter 5.
Neither commands nor variables are listed in this index, since Chapter
8 contains tables listing each predefined variable and each command,
along with a reference for each to the section in which it is
described.

The references appear here in the same order that they appear in
the document. This is not necessarily the order of importance.

The notation P:L refers to line L on page P, where the line number
starts at one with the first text line (not counting the header)¢33>,
For example, a8 reference to this point in the text would appear as
“82:137.

adjust mode 4:3, 42:27

BCPL 73:23

buffers 24:4

chopping 3:31

commentg 9:24, 10:4, 13:15, 68:9
conversion 7:3, 7:10, B8:32, 27:23
data types 5:?7

errors 11:3, 74:1
expressions 7:17

fill mode 4:3, 21:27, 43:10
flags 34:10, 34:22, 43:16
footers (see headerss
footnotes 32:32, 37:35
headers 13:25, 22:13, 68:23
help call 11:3, 65:35, 74:10
hyphenation 31:18, 43:20

A (script h) 4:16, 25:9, 32:12
include files 40:24

LDX 11:19, 11:29, 74:6
macros 35:17

margins 14:46, 22:26, 34:6

(33> It is derived from the LO variable #linecount#.

Index Index

84

Index

page numbering

parameters
prompt

sentence end
substitution
tabs

TO
traps
triple

variables
warnings
Wwindous

> XA

i

° e
ot
o K

23:11
35:31
74:13

30:22
18:15
4:22, 29:8

12:7
38:22, 69:33
20:17

4:30, 25:24,
11:23, 27:6,
15:24, 35:7,

13:17, 36:29, 65:22

13:20, 36:22
13:15

47:4,
44 :28
45:3

?

6

Index

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Rhen Doto Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. { 3. RECIPIENT'S CATALOG NUMBER

ESD-TR-75-119

4. TITLE (ond Subtstle) 5. TYPE OF REPORT & PERIOD COVEREO

Technical Note
LO — A Text Formatting Program

6. PERFORMING ORG. REPORT NUMBER
Technical Note 1975-13

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s/
Evans, Arthur,]Jr. F19628-73-C-0002
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Lincoln Laboratory, M.1.T.
P.O. Box 73
Lexington, MA 02173 ARPA Order 2006
11, CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
Advanced Research Projects Agency 21 F
ebruary 1975
1400 Wilson Boulevard Iy
Arung[on. VA 22209 13. Ng;BER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 15. SECURITY CLASS. (of this report)
Electronic Systems Division Unclassified
Hanscom AFB
15a. DECLASSIFICATION OOWNGRAOING
Bedford, MA 01731 * SCHEDULE
16, DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the obstroct entered in Block 20, if differeat from Report)
18. SUPPLEMENTARY NOTES
None
19. XEY WORDS (Continue on reverse side if necessory and identify by block number)
speech understanding systems TX-2 Computer

text formatting program

M, ABSTRACT (Continue on reverse side if necessary and identify by block number)

LO is a text formatting program used to prepare documents such as this report. It reads an input text
file and creates an output file, The input file contains text to be printed, interspersed with commands to LO
that direct its operation, Commands are expressed in a language of considerable sophistication. The com-
mand language is described, the presentation being designed to be suitable both as a primer to the learner
as well as a reference manual for the expert,

LO currently runs on the TX-2 Computer at Lincoln Laboratory, and details are provided on its use
in that environment. There is a brief discussion of the steps involved in implementing it on a different
computer system.

DD lj‘::"n 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dato Entered)

s -

-_——

